![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1548191
<2024> ¸ðµâ ÆÑ ¼ÒÀç ±â¼ú µ¿Çâ ¹× ½ÃÀå Àü¸Á(-2035)<2024> Technology Trend and Market Outlook of Materials for Battery Module and Pack (~2035) |
Àü±â ÀÚµ¿Â÷ÀÇ ¹èÅ͸® ³»¿¡¼ ¼ÒÀç´Â ¸Å¿ì Áß¿äÇÑ ºÎºÐÀÔ´Ï´Ù. ÃÖ±Ù±îÁö ¹èÅ͸® ¼¿ÀÇ ¼ÒÀç ÇöȲ°ú ÇâÈÄ º¯È¿¡ ´ëÇØ ¸¹Àº ÀÚ·áµéÀÌ ½ñ¾ÆÁ® ³ª¿Ô½À´Ï´Ù. ¹èÅ͸® ¼¿Àº ¿ø°¡±¸Á¶³ª »ç¿ë·®¿¡¼µµ ¸Å¿ì Áß¿äÇÑ ºÎºÐÀ̳ª ¼¿À» Á¦¿ÜÇÑ ¸ðµâ°ú ÆÑ³»ÀÇ ¼ÒÀç´Â Á¤º¸ Á¢±Ù¼º¿¡¼ ¸¹Àº ÀÚ·áµéÀÌ ½ÃÀå³»¿¡ Á¸ÀçÇÏÁö ¾Ê¾Ò½À´Ï´Ù. º» ¸®Æ÷Æ®´Â ¹èÅ͸® ¸ðµâ°ú ÆÑÀÇ ¼ÒÀçÀÇ ÁÖ¿ä »ç¿ë ¸ñÀû ¹× ÇâÈÄ º¯È¿¡ ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï ÀÛ¼ºµÇ¾ú½À´Ï´Ù. º» ¸®Æ÷Æ®¿¡¼ Àü±âÀÚµ¿Â÷·Î ºÐ·ùµÈ BEV¿Í PHEV¿¡ »ç¿ëµÇ´Â Àü±âÀÚµ¿Â÷¿ë ÆÑÀÇ ±Û·Î¹ú ½ÃÀåÀº ¿¬Æò±Õ 9%(CAGR, ¡®21-¡¯35)¼ºÀåÀÌ Àü¸ÁµË´Ï´Ù. ÆÑ ±âÁØÀ¸·Î ¡®24³â 123 Bil. USD¿¡¼ ¡®35³â 462 Bil. USD·Î ¼ºÀåÇÒ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù. ¹èÅ͸® ¼¿ ¹× ÆÑ Á¦Á¶¿¡ ¼Ò¿äµÇ´Â °¡°øºñ¿Í ÀÌÀ±À» Á¦¿ÜÇÑ ÆÑ³» ºÎǰ ½ÃÀåÀº ¡®25³â 34 Bil. USD¿¡¼ ¡®35³â 113 Bil. USD·Î ¼ºÀåÀÌ Àü¸ÁµÇ¸ç, ÆÑÀ» Á¦Á¶Çϴµ¥ ÇÊ¿äÇÑ ºÎǰµéÀÌ Â÷ÁöÇÏ´Â ¿ø°¡ºñÁßÀº Àüü ¹èÅ͸® ÆÑ Áß ¾à 25%¸¦ Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Àü±âÀÚµ¿Â÷¿ë ÆÑ¿¡¼ ¹èÅ͸® ¼¿ À̿ܿ¡ ¼¿°£ ±¸Á¶ ¼ÒÀç°¡ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÇÏÁö¸¸ ¿¡³ÊÁö ¹Ðµµ Çâ»óÀ» À§ÇØ Cell To Pack ¹× Cell To Chassis µî ¼³°è º¯°æ µî¿¡ µû¶ó ¼¿°£ ±¸Á¶ ¼ÒÀç »ç¿ë·®Àº Á¡Á¡ ÁÙ¾îµé °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹èÅ͸® ¼¿¿¡¼ ¾ç±ØÀç¿ë ´ÏÄÌ, ÄÚ¹ßÆ®, ö, ¸Á°£°ú À½±ØÀç·Î »ç¿ëµÇ´Â Èæ¿¬(ÀÎÁ¶/õ¿¬)ÀÌ Àüü ¼ÒÀç ¼ö¿ä¿¡ Áß¿äÇÑ ºÎºÐÀ» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Current Collector ¿ªÇÒ·Î ±¸¸®¿Í ¾Ë·ç¹Ì´½ ¼ÒÀçµµ Áß¿äÇÑ ¼ÒÀçÀÔ´Ï´Ù. ¡®35³â±îÁö ¼ÒÀç°ü·Ã µÎµå·¯Áø ¼ö¿ä°¡ °¨¼ÒµÇ´Â ¼ÒÀç´Â ¾ø´Â °ÍÀ¸·Î º¸À̳ª, ¹èÅ͸® ¼ÒÀç¿¡¼´Â °¡°ÝÀÌ ³ôÀº ÄÚ¹ßÆ®¸¦ »ç¿ëÇÏÁö ¾ÊÀ¸·Á´Â Ãß¼¼¿Í ¾ÈÁ¤¼ºÀ» °È½ÃŰ´Â ¼ÒÀç°¡ ´Ã¾î³¯ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Materials within electric vehicle batteries play a critical role in overall performance. Recent years have seen a surge in research and information about battery cell materials. While battery cells are crucial components in terms of both cost and usage, the materials used in battery modules and packs have received relatively less attention in terms of importance and available data. This report focuses on the primary purposes of materials used in battery modules and packs and their anticipated future trends. The discussion of battery cells is limited to their four core components.
The global market for electric vehicle (EV) battery packs, including both BEVs and PHEVs, is projected to grow at a compound annual growth rate (CAGR) of 19% from 2021 to 2035. The market value for EV battery packs is expected to increase from $123 billion in 2024 to $462 billion in 2035. Excluding cell and pack manufacturing costs and profits, the market for components within the battery pack is forecast to grow from $34 billion in 2025 to $113 billion in 2035, accounting for approximately 25% of the total battery pack cost.
Battery cells are the main materials in EV packs, but inter-cell structures are also important. However, with design changes like Cell-to-Pack and Cell-to-Chassis aimed at increasing energy density, the demand for these inter-cell structural materials is expected to decrease. Within battery cells, materials like nickel, cobalt, iron, and manganese for the cathode, and graphite (synthetic or natural) for the anode, constitute a significant portion of the overall material demand. Copper and aluminum, serving as current collectors, are also crucial materials. While there seems to be no significant decline in demand for specific materials through 2035, the industry is moving away from the use of expensive cobalt and focusing on enhancing safety. Additionally, this report delves into the recent surge in thermal runaway incidents in battery modules and packs, and the materials and development strategies being employed to prevent such occurrences.
This report provides updated information on companies including Sang-A Frontec, Sangsin EDP, Dongwon Systems, Yulchon Chemical, KET, Younghwa Tech, LS EV Korea, Hyunwoo Industrial, Yura Corporation, Kyungshin, Hanjoo Metal, Aluko, Inzi Controls, Shinsung Delta Tech, Hanon Systems, WACKER, Saint-Gobain PPL, Dong-A Hwa Sung, Sebang Lithium Battery, Yamada Weld Tech Korea, and Trumpf Korea.