½ÃÀ庸°í¼­
»óǰÄÚµå
1343613

<2023> ¸®Æ¬ÀÌÂ÷ÀüÁö¿ë ¹ÙÀδõ ±â¼ú°³¹ß ÇöȲ ¹× Àü¸Á

<2023> Development Status and Outlook of Binder Technology for Secondary Batteries

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: SNE Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® ¶Ç´Â ±¹¹® - 237 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¸®Æ¬ÀÌ¿ÂÀüÁö(LIB)´Â ³ôÀº ¿¡³ÊÁö¹Ðµµ¿Í Àü·Â¹Ðµµ·Î ÀÎÇØ Àü±âÀÚµ¿Â÷ ¹× ÇÏÀ̺긮µå ÀåÄ¡¿¡¼­ »ç¿ëµÇ´Â ¿¡³ÊÁöÀúÀå ¼ö¿ä Áõ°¡¸¦ ÇØ°áÇϱâ À§ÇØ °¡Àå À¯¸ÁÇÑ ¿¡³ÊÁöÀúÀåÀåÄ¡ÀÇ Çϳª·Î, ź¼ÒÀú°¨À» À§ÇÑ Ä£È¯°æ ¿¡³ÊÁö Ȱ¿ë¿¡ ´ëÇÑ °ü½ÉÀÇ Áõ°¡¿Í ÇÔ²² ±× »ç¿ë·®ÀÌ ±Þ°ÝÈ÷ ´Ã°í ÀÖ½À´Ï´Ù.

SNE Research¿¡ µû¸£¸é, »õ·Î¿î ¿¡³ÊÁöÀúÀåÀåÄ¡¿Í Àü±âÀÚµ¿Â÷ÀÇ ±Þ¼ÓÇÑ ¹ßÀü ÀÌÈÄ LIB¿¡ ´ëÇÑ ¼ö¿ä´Â ²ÙÁØÈ÷ Áõ°¡ÇÏ¿© Àü±âÂ÷ ¹èÅ͸® ½ÃÀå ±Ô¸ð´Â ¿¬Æò±Õ 21% ¼ºÀåÇϸç, ¡®25³â 196B$¿¡¼­ ¡®30³â 401B$·Î ¼ºÀåÇÒ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù.

LIBÀÇ Æ¯¼ºÀº Àü±Ø¿¡ µû¶ó Å©°Ô Á¿ìµÇ´Âµ¥, ¶Ù¾î³­ ¹èÅ͸® ¼º´ÉÀ» ´Þ¼ºÇϱâ À§Çؼ­´Â Àü±Ø±¸Á¶¸¦ ÃÖÀûÈ­ÇÏ´Â °ÍÀÌ ÃÖ¿ì¼± °úÁ¦¶ó°í ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇöÀç »ó¿ëÈ­µÈ LIB¿¡¼­ »Ó¸¸ ¾Æ´Ï¶ó ¿¬±¸ºÐ¾ß¿¡¼­µµ ¾ç±Ø°ú À½±ØÀÇ È°¹°ÁúÀº ¸¹Àº °ü½É°ú ÇÔ²² ¿¬±¸ ¹× °ËÅäµÇ°í Àִµ¥ ºñÇØ, ºñȰ¼ºÀÎ ¹ÙÀδõ´Â ³·Àº Áß·®ºñ(¡Â5wt%)·Î Àü±ØÀÇ ¿ÂÀüÇÔÀ» À¯ÁöÇϰí Àü±âÈ­ÇÐÀû °øÁ¤À» Áö¿øÇϸç, Ȱ¹°Áú°ú µµÀüÀç¿Í ÇÔ²² Àü±ØÀÇ ¼º´É ±¸Çö Ãø¸é¿¡¼­ Áß¿äÇÑ À§Ä¡¸¦ Â÷ÁöÇÏÁö¸¸ Á߿伺¿¡ ºñÇØ ´ú ÁÖ¸ñ¹Þ°í ÀÖ´Â °ÍÀÌ Çö½ÇÀÔ´Ï´Ù.

¹ÙÀδõ´Â Àü±Ø ³»¿¡¼­ Â÷ÁöÇÏ´Â ºÎºÐÀÌ ¸Å¿ì ÀÛÀº ÆíÀÌÁö¸¸, Àü±Ø Àüü ¼º´ÉÀ» °áÁ¤Áþ´Â Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¹ÙÀδõ´Â ¾ç±Ø ¹× À½±ØÀÇ È°¹°Áú ¹× µµÀüÀ縦 ÁýÀüüÀÎ °¢ ±ØÆÇ¿¡ Àß ºÎÂø½Ã۰í, ³»±¸¼ºÀ» ³ôÀÌ´Â ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¹ÙÀδõ´Â (1)ÀüÇØÁú¿¡ Àü±âÈ­ÇÐÀûÀ¸·Î ¾ÈÁ¤ÀûÀÌ¿©¾ß Çϰí, (2)À¯¿¬¼º°ú ºÒ¿ë¼ºÀ» °¡Á®¾ß Çϸç, (3)ƯÈ÷ ¾ç±Ø ¹ÙÀδõÀÇ °æ¿ì »êÈ­¿¡ ÀÇÇÑ ºÎ½Ä¹æÁö ±â´ÉÀÌ ÀÖ¾î¾ß ÇÕ´Ï´Ù.

µû¶ó¼­, Ȱ¹°Áú°ú µµÀüÀ縦 ÁýÀüü¿Í È¿°úÀûÀ¸·Î ¿¬°áÇÏ°í ºÎÇÇ ÆØÃ¢À» ¼ö¿ëÇÏ¿© Ãæ¹æÀü µ¿¾È ¿ì¼öÇÑ Àü±Ø ±¸Á¶¸¦ º¸ÀåÇÒ ¼ö ÀÖ´Â ³ôÀº °áÇÕ°­µµ¿Í ź¼ºÀ» Áö´Ñ ±â´É¼º ¹ÙÀδõ°¡ ÇÊ¿äÇÕ´Ï´Ù. ÃÖ±Ù ¹ÙÀδõ ½ºÅ©¸®´×(screening) ¹× ¼³°è¿¡ ´ëÇÑ ´õ ¸¹Àº ÅëÂû·ÂÀ» ÅëÇØ ¿¬±¸ÀÇ ÃÊÁ¡ÀÌ ±â°èÀû ¾ÈÁ¤È­ °üÁ¡¿¡¼­ ±¸Á¶Àû ÁöÁöü »Ó¸¸ ¾Æ´Ï¶ó Àü±âÈ­ÇÐÀûÀ¸·Î ÀÌÁ¡À» Á¦°øÇÏ´Â ´Ù±â´É¼ºÀ¸·Î À̵¿Çϰí ÀÖ½À´Ï´Ù.

ÃÖ±Ù, ½Ç¸®ÄÜ À½±ØÀç äÅÃÀÌ ´Ã¾î³ª¸é¼­ ¹ÙÀδõ°¡ ¸®Æ¬È­(lithiation)¹ÝÀÀ¿¡ ¸¹Àº ¿µÇâÀ» ÁÖ¾î Àü±Ø ¿ë·® ¹× »çÀÌŬ ¾È¼º¼º Çâ»ó¿¡ µµ¿òÀÌ µÈ´Ù´Â ¿¬±¸°¡ ³ª¿Í Â÷¼¼´ë ¿¬±¸°¡ Ȱ¹ßÈ÷ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ±âÁ¸ ¹ÙÀδõ´Â ¾ç±ØÀç¿¡´Â ÁÖ·Î ºÒ¼Ò¼öÁöÀÎ PVDF(PolyVinyliDeneFluoride)¸¦, À½±ØÀç¿¡´Â ÇÕ¼º°í¹«ÀÎ SBR(Styrene-Butadiene-Rubber)°ú CMC(Carboxyl Methyl Cellulose) ¹ÙÀδõ¸¦ »ç¿ëÇßÀ¸³ª, ½Ç¸®ÄÜ À½±ØÀç¿¡¼­´Â ºÎÇǺ¯È­°¡ Ä¿¼­ »ç¿ë¿¡ ºÎÀûÇÕÇÕ´Ï´Ù.

ÃÖ±Ù¿¡ ¾ç±ØÀç¿¡´Â PTFE(PolyTetraFluoroEthylene)¹ÙÀδõ°¡ À½±ØÀç¿¡´Â PAA(PolyAcrylicAcid), PI(PolyImide)°è µî ¼ö°è ¹ÙÀδõ µîÀÌ °¢±¤À» ¹Þ°í ÀÖ½À´Ï´Ù.

PAA, PI µîÀÇ ¹ÙÀδõ´Â ¼ö°è ¹ÙÀδõ·Î, ¹° ±â¹Ý ¼ö°è ¿ë¸Å¸¦ ÀüÇØÁú·Î »ç¿ëÇÏ´Â ½Ç¸®ÄÜ À½±ØÀç¿¡ »ç¿ëµË´Ï´Ù. À§ ¹ÙÀδõµéÀº ±âÁ¸ ¹ÙÀδõ¿¡ ºñÇØ ÀÎÀå°­µµ°¡ ³ô°í, Á¢Âø·ÂÀÌ ³ô¾Æ ½Ç¸®ÄÜ À½±ØÀçÀÇ ºÎÇÇ ÆØÃ¢¿¡ °­Çϸç Ȱ¹°ÁúÀ» °¨½Î¼­ ¾ÈÁ¤ÀûÀÎ SEI(Solid Electrolyte Interphase)ÃþÀ» Çü¼ºÇÕ´Ï´Ù.

Â÷¼¼´ë ¾ç±ØÀç¿ë ¹ÙÀδõÀÎ PTFE´Â °Ç½Ä Àü±Ø°øÁ¤¿ë ¹ÙÀδõ·Î ³»È­Çмº, ³»¿­¼ºÀÌ ¸Å¿ì ¶Ù¾î³­ ¼Ò¼ö¼º ¼ÒÀç·Î °Ç½Ä Àü±Ø°øÁ¤À̳ª Àü°íüÀüÁö¿¡¼­ ÁÖ¸ñ¹ÞÀ» °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

PVDF ¹ÙÀδõ´Â ÀϺ»ÀÇ Kureha, º§±â¿¡ÀÇ Solvay, ÇÁ¶û½ºÀÇ Arkema°¡ »ý»êÇϰí ÀÖÀ¸¸ç, SBR ¹ÙÀδõ´Â ÀϺ»ÀÇ Zeon¿¡¼­ »ý»êÇϰí ÀÖ¾î ¸ðµÎ ¿Ü±¹»ê ºñÁßÀÌ ³ôÀº °í°¡ ǰ¸ñÀÔ´Ï´Ù.

¾ç±ØÀç ¹ÙÀδõ´Â ±¹³»ÀÇ ÄÍÆ®·Î½º, À½±ØÀç ¹ÙÀδõÀÇ °æ¿ì ±¹³»ÀÇ ÇѼÖÄɹÌÄ®ÀÌ ±¹»êÈ­¿¡ ¼º°øÇÏ¿© »ï¼ºSDI¿Í SK On¿¡ °ø±ÞÇϰí ÀÖÀ¸¸ç, LG Chem.°ú ±ÝÈ£¼®À¯È­Çеµ À½±ØÀç ¹ÙÀδõ °ø±Þ¿¡ ³ª¼­°í ÀÖ½À´Ï´Ù.

ÇÑÆí SNE ResearchÀÇ ±Û·Î¹ú ¸®Æ¬ÀÌ¿ÂÀüÁö¿ë ¹ÙÀδõ ¼ö¿ä Àü¸ÁÀ» º¸¸é, 2025³â 89,000Åæ¿¡¼­ 2030³â 232,000ÅæÀ¸·Î Áõ°¡ÇÒ °ÍÀ¸·Î Àü¸ÁµÇ¸ç, ±Ý¾×À¸·Î´Â 2030³â¿¡ ¾à 4.4Á¶¿øÀÌ µÉ °ÍÀ¸·Î Àü¸ÁÇϰí ÀÖ½À´Ï´Ù.

°í¿¡³ÊÁö¹Ðµµ ¹èÅ͸®´Â °í¼º´É ¹ÙÀδõ¿¡ ´ëÇÑ ¿ä±¸»çÇ×ÀÌ ´õ ³ô¾ÆÁú °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÀÌ·¯ÇÑ °üÁ¡¿¡¼­ ¹ÙÀδõ ¼³°è´Â ´ÙÀ½À» °í·ÁÇØ¾ß ÇÕ´Ï´Ù.

(1) ±â°èÀû °­µµ¿Í Á¢Âø·ÂÀ» ÀÒÁö ¾Ê°í ¹ÙÀδõ ÇÔ·®Àº Àüü Àü±Ø Áú·®ÀÇ 3wt%ÀÌÇÏ ÀÏ °Í. (2) Àúºñ¿ë ¹× Áö¼Ó °¡´É¡¯25³â ¼º °üÁ¡¿¡¼­ ¼ö°è ¹× °Ç½Ä ±â¹Ý °íºÐÀÚ¸¦ ÀÌ¿ëÇÑ ÇÕ¼ºÀÇ ´Ü¼øÈ­. (3) ÇÊ¿äÇÑ ¸ðµç ±â´ÉÀ» ÇϳªÀÇ °íºÐÀÚ¿¡ ÅëÇÕÇÒ ¼ö ÀÖ´Â ´Ù±â´É¼º °íºÐÀÚ ¹ÙÀδõ. (4) °íºÐÀÚ ºÐ»ê ¹× ºÐÇØ ¸ÞÄ¿´ÏÁò¿¡ ´ëÇÑ ±íÀº ÅëÂû·Â µî ÀÔ´Ï´Ù.

º» ¸®Æ÷Æ®¿¡¼­ SNE´Â ¸®Æ¬À̿ ÀüÁö Àü±ØÀ» À§ÇÑ ¹ÙÀδõ ¼³°è, ÇÕ¼º ¹× ÀüÁö¿¡ÀÇ Àû¿ë¿¡ ´ëÇÑ Áö±Ý±îÁöÀÇ ¹®Çå¿¡ ³ª¿Â Á¤º¸¸¦ »ó¼¼ÇÏ°Ô Á¤¸®ÇÏ¿´À¸¸ç, ´ç»çÀÇ ¸®Æ¬À̿ ÀüÁö¿¡ ´ëÇÑ Àü¸ÁÀڷḦ ±âÃÊ·Î ¹ÙÀδõ¿¡ ´ëÇÑ ¼ö¿ä ¹× ½ÃÀåÀ» Àü¸ÁÇÏ¿´À¸¸ç, ºÎ·Ï¿¡´Â ¿ÜºÎ ¸®¼­Ä¡ ±â°üÀÇ ½ÃÀå±Ô¸ð ¹× Àü¸ÁÀ» ÀοëÇÏ¿© µ¶ÀÚµéÀÌ ÀüüÀûÀÎ ±Ô¸ð¸¦ ÆÄ¾ÇÇϴµ¥ µµ¿òÀ» ÁÖ°íÀÚ ÇÏ¿´½À´Ï´Ù.

¸¶Áö¸·À¸·Î, ¹ÙÀδõ Á¦Á¶¾÷üÀÇ ÇöȲ ¹× ÁÖ¿ä Á¦Ç°À» Á¤¸®ÇÔÀ¸·Î½á ÀÌ ºÐ¾ßÀÇ ¿¬±¸ÀÚ ¹× °ü½ÉÀÖ´Â ºÐµé¿¡°Ô ÀüüÀûÀÎ ÅëÂû·ÂÀ» Á¦°øÇÔÀ¸·Î½á ÀüÁöÀÇ ¿¡³ÊÁö¹Ðµµ, ±Þ¼Ó ÃæÀü ´É·Â ¹× Àå±â ¼ö¸í Ư¼º µî ÀüÁöÀÇ ¼º´ÉÀ» Çâ»ó½Ã۴µ¥ Å« µµ¿òÀÌ µÉ °ÍÀ¸·Î ±â´ëÇÕ´Ï´Ù.

º» º¸°í¼­ÀÇ Strong Point

  • ¨ç ¹ÙÀδõ¿¡ ´ëÇÑ Àü¹ÝÀûÀÎ °³¿ä ¹× dzºÎÇÑ ±â¼ú³»¿ë ¼ö·Ï
  • ¨è ¹ÙÀδõÀÇ °³¹ß»ç·Ê¸¦ ÅëÇØ ÇÙ½É pointÀÎ ¼³°è, ÇÕ¼º ½Ã °í·Á »çÇ×À» ¼ö·Ï
  • ¨é LIB»Ó¸¸ ¾Æ´Ï¶ó Â÷¼¼´ë ÀüÁöÀÎ Li-S³ª Àü°íüÀüÁö¿ë ¹ÙÀδõ °³¹ß ÇöȲ ¹× »ç·Ê ºÐ¼® Á¤¸®
  • ¨ê SNE ResearchÀÇ ¹èÅ͸® Àü¸ÁÄ¡¿¡ ±Ù°ÅÇÑ °´°üÀûÀÎ ¹ÙÀδõ ½ÃÀå Àü¸ÁÀ» ÅëÇØ ¹ÙÀδõ ½ÃÀå¿¡ ´ëÇÑ °´°üÀûÀÎ ¼öÄ¡ Á¦°ø
  • ¨ë ÁÖ¿ä ¹ÙÀδõ ±â¾÷ °³¹ß ÇöȲ ¹× Á¦Ç° ÇöȲ¿¡ ´ëÇÑ »ó¼¼ÇÑ Á¤º¸ ¼ö·Ï

¸ñ Â÷

1. ¹ÙÀδõ °³¿ä

  • 1.1. ¼­·Ð
  • 1.2. Á¤ÀÇ, ¿ªÇÒ ¹× ¿ä±¸¹°¼º
    • 1.2.1. ¿ªÇÒ ¹× ±â´É
    • 1.2.2. ¿ä±¸ ¹°¼º
  • 1.3. À¯Çü ¹× Á¾·ù
    • 1.3.1. À¯Çü(types)
  • 1.4. ÀÛµ¿ ¸ÞÄ¿´ÏÁò

2. ¹ÙÀδõÀÇ Á¾·ù ¹× ¿¬±¸°³¹ß »ç·Ê

  • 2.1. ¾ç±Ø ¹ÙÀδõ
    • 2.1.1. ºñ¼ö°è ¹ÙÀδõ
    • 2.1.2. PVDF¾ç±Ø ¹ÙÀδõ »ê¾÷ ÇöȲ
    • 2.1.3. (CMC+SBR) À½±Ø ¹ÙÀδõ »ê¾÷ ÇöȲ
    • 2.1.4. ¼ö°è ¹ÙÀδõ
    • 2.1.5. ±âŸ ¹ÙÀδõȲ
  • 2.2. À½±Ø ¹ÙÀδõ
    • 2.2.1. »ðÀÔÇü À½±Ø ¹ÙÀδõ
      • 2.2.1.1. Èæ¿¬Àü±Ø¿ë ¹ÙÀδõ
      • 2.2.1.2. LTOÀü±Ø¿ë ¹ÙÀδõ
    • 2.2.2. ÇÕ±ÝÇü À½±Ø ¹ÙÀδõ
      • 2.2.2.1. ¼±Çü °íºÐÀÚ ¹ÙÀδõ
      • 2.2.2.2. °¡±³ °íºÐÀÚ ¹ÙÀδõ
      • 2.2.2.3. °¥·¡(ºÐÁö) ¹× ÃÊ´ëÇü °íºÐÀÚ ¹ÙÀδõ
      • 2.2.2.4. Àüµµ¼º °íºÐÀÚ ¹ÙÀδõ
  • 2.3. Â÷¼¼´ë ÀüÁö¿ë ¹ÙÀδõ (1)
    • 2.3.1. ¸®Æ¬-Ȳ ÀüÁö¿ë ¹ÙÀδõ
    • 2.3.2. °Ç½Ä°øÁ¤¿ë ¹ÙÀδõ
  • 2.4. Â÷¼¼´ë ÀüÁö¿ë ¹ÙÀδõ (2)
    • 2.4.1. °íüÀüÇØÁú¿ë ¹ÙÀδõ
      • 2.4.1.1. Àü°íüÀüÁö °³¿ä
      • 2.4.1.2. Ȳȭ¹°°è Àü°íüÀüÁö
      • 2.4.1.3. Àü°íüÀüÁö Á¦Á¶ ¹× ¹ÙÀδõÀÇ Çʿ伺
      • 2.4.1.4. ¾ç±Ø¿ë ¹ÙÀδõ ±â¼ú
        • 2.4.1.4.1. ½À½Ä°øÁ¤¿ë ¹ÙÀδõ ±â¼ú
        • 2.4.1.4.2. °Ç½Ä°øÁ¤¿ë ¹ÙÀδõ ±â¼ú
      • 2.4.1.5. ÀüÇØÁúÃþ¿ë ¹ÙÀδõ ±â¼ú
      • 2.4.1.6. À½±Ø¿ë ¹ÙÀδõ ±â¼ú
        • 2.4.1.6.1. Èæ¿¬±â¹Ý À½±Ø ¹ÙÀδõ ±â¼ú
        • 2.4.1.6.2. Â÷¼¼´ë À½±Ø ¹ÙÀδõ ±â¼ú

3. ¹ÙÀδõ ½ÃÀå

  • 3.1. ¹ÙÀδõ ½ÃÀå Àüü Àü¸Á
  • 3.2. ±Û·Î¹ú LIB¿ë ¹ÙÀδõ ½ÃÀå Àü¸Á
    • 3.2.1. ±Û·Î¹ú ¹èÅ͸® ½ÃÀå ¼ö¿ä
    • 3.2.2. ±Û·Î¹ú LIB¹èÅ͸®¿ë ¹ÙÀδõ ¼ö¿ä Àü¸Á
    • 3.2.3. LIB¹èÅ͸®¿ë ¹ÙÀδõ °¡°Ý Àü¸Á
    • 3.2.4. LIB¹èÅ͸®¿ë ¹ÙÀδõ ½ÃÀå±Ô¸ð Àü¸Á
    • 3.2.5. ±Û·Î¹ú LFP¹èÅ͸® ¼ö¿ä ¹× ¾ç±ØÀç ¼ö¿ä Àü¸Á
    • 3.2.6. LFP ¹èÅ͸®¿ë PTFE °¡°Ý ¹× ½ÃÀå Àü¸Á
    • 3.2.7. LFP ¹èÅ͸®¿ë PTFE ¹ÙÀδõ »ç¿ë·®
    • 3.2.8. ½Ç¸®Äܰè À½±Ø¿ë ¹ÙÀδõ ½ÃÀå Àü¸Á
    • 3.2.9. ½Ç¸®Äܰè À½±ØÀç ½ÃÀå Àü¸Á
    • 3.2.10. ½Ç¸®ÄÜ À½±Ø¿ë ¹ÙÀδõPAA ½ÃÀå Àü¸Á
    • 3.2.11. TeslaÇâ 4680 ÀüÁö¿ë ¹ÙÀδõ ÄÚ½ºÆ® ºÐ¼®
    • 3.2.12. PVDF binder Á¦Á¶±â¾÷µéÀÇ ÃâÇÏ·® ¹× M/S
    • 3.2.13. SBR binder Á¦Á¶±â¾÷µéÀÇ ÃâÇÏ·® ¹× M/S
    • 3.2.14. CMC binder Á¦Á¶±â¾÷µéÀÇ ÃâÇÏ·® ¹× M/S

4. ¹ÙÀδõ Á¦Á¶¾÷ü ÇöȲ

  • [1] Arkema
  • [2] BASF SE
  • [3] Solvay
  • [4] Kureha
  • [5] ZEON
  • [6] JSR
  • [7] Fujian Blue Ocean Black Stone
  • [8] Dupont
  • [9] Ashland Inc
  • [10] MTI Corp.
  • [11] TRINSEO
  • [12] Xinxiang Jinbang Power Technology
  • [13] Lihong Fine Chemical
  • [14] ÄÍÆ®·Î½º
  • [15] ÇѼÖÄɹÌÄ®
  • [16] ±ÝÈ£¼®À¯È­ÇÐ
  • [17] Daikin Industry
  • [18] Nanografi Nano Technology
  • [19] Nippon Paper Group
  • [20] APV Engineered Coatings LLC
  • [21] Sichuan Indigo Materials Science & Technology
  • [22] Guangzhou Songbai Chemical Co
  • [23] Nippon A&L Inc
  • [24] Daicel Miraizu Ltd
  • [25] Sinochem Group Co
  • [26] Ube Corp.
  • [27] AOT Battery Equipment Technology
  • [28] Shanghai 3F New Materials
  • [29] GL Chem

5. ºÎ·Ï(Âü°í¿ë)

6. References

Lithium-ion batteries (LIBs) are one of the most promising energy storage devices to address the growing demand for energy storage in electric vehicles and hybrid devices due to their high energy and power density, and their use is increasing rapidly with the growing interest in utilizing green energy for carbon reduction.

According to SNE Research, after the rapid development of new energy storage devices and electric vehicles, the demand for LIBs has been steadily increasing, and the electric vehicle battery market size is expected to grow from $196B in '25 to $401B in '30, with a CAGR of 21%.

The characteristics of LIBs are highly dependent on the electrodes, and optimizing the electrode structure is a top priority to achieve superior battery performance. While the active materials of the anode and cathode are currently being studied and examined with great interest in commercialized LIBs as well as in research, the inactive binder, which maintains the integrity of the electrode and supports the electrochemical process at a low weight fraction (≤5wt%), occupies a critical position in the performance of the electrode along with the active materials and conductors, but has received less attention compared to its importance.

Although binders are a very small part of the electrode, they play a critical role in determining the overall performance of the electrode. The binder is responsible for the adhesion of the anode and cathode active materials to the respective pole plates of the collector and for their durability. The binder must be (1) electrochemically stable in the electrolyte, (2) flexible and insoluble, and (3) resistant to corrosion by oxidation, especially for cathode binders.

Therefore, a functional binder with high bond strength and elasticity is required to effectively connect the active material and the conductor to the collector and accommodate volume expansion to ensure good electrode structure during charge and discharge. Recently, with more insights into binder screening and design, the focus of research is shifting from a mechanical stabilization perspective to multifunctionality that provides electrochemical benefits as well as structural support.

Recently, with the increasing adoption of silicon cathode materials, a new generation of research is underway, as studies have shown that binders have a significant impact on the lithiation reaction, helping to improve electrode capacity and cycleability. Conventional binders mainly use PVDF (PolyVinyliDeneFluoride), a fluoroplastic, for the cathode and SBR (Styrene-Butadiene-Rubber) and CMC (Carboxyl Methyl Cellulose) binders, a synthetic rubber, for the anode, but they are not suitable for use in silicon anodes due to large volume changes.

PTFE (PolyTetraFluoroEthylene) binders have been used for cathode materials, and water-based binders such as PAA (PolyAcrylicAcid) and PI (PolyImide) have been attracting attention for anode materials.

Binders such as PAA and PI are water-based binders, which are used in silicon anode materials that use water-based solvents as electrolytes. Compared to conventional binders, these binders have high tensile strength, high adhesion, and are resistant to volume expansion of silicon anode materials and form a stable SEI (Solid Electrolyte Interphase) layer by wrapping the active material.

PTFE, a next-generation binder for cathode materials, is a hydrophobic material with excellent chemical and heat resistance and is expected to gain attention in dry electrode processes and all-solid-state batteries.

PVDF binders are produced by Kureha in Japan, Solvay in Belgium, and Arkema in France, and SBR binders are produced by Zeon in Japan, all of which are expensive items with a high proportion of foreign production.

The cathode binder is produced by Korea's Chemtros, and for the anode binder, Korea's Hansol Chemical has successfully localized it and is supplying it to Samsung SDI and SK On, while LG Chem. and Kumho Petrochemical are also supplying cathode binders.

Meanwhile, SNE Research's global demand forecast for binders for lithium-ion batteries is expected to increase from 89,000 tons in 2025 to 232,000 tons in 2030, with a value of about KRW 4.4 trillion in 2030.

High-energy-density batteries are expected to place higher requirements on high-performance binders, and from this perspective, binder design should consider the following.

  • (1) The binder content should be less than or equal to 3 wt% of the total electrode mass without losing mechanical strength and adhesion.
  • (2) Simplification of synthesis using water-based and dry-based polymers from the perspective of low cost and sustainability.
  • (3) Multifunctional polymer binders that can integrate all necessary functions into one polymer.
  • (4) Deep insights into polymer dispersion and degradation mechanisms, and more.

In this report, SNE has summarized in detail the information available in the literature on the design, synthesis, and application of binders for lithium-ion battery electrodes and forecasted the demand and market for binders based on our forecasts for lithium-ion batteries, and quoted market size and forecasts from external research organizations in the appendix to help readers understand the overall scale.

Finally, by summarizing the status of binder manufacturers and their main products, we hope to provide a holistic insight for researchers and interested parties in this field, which will help to improve the performance of batteries, including their energy density, fast charging capability, and long-term life characteristics.

Strong points of this report:

  • (1) Provides a general overview of the binder and contains rich technical content
  • (2) Includes key points to consider in design and synthesis through examples of binder development.
  • (3) Summarizes the development status and case analysis of binders not only for LIBs but also for next-generation batteries such as Li-S and all-solid-state batteries.
  • (4) Provides objective figures on the binder market through objective binder market forecasts based on SNE Research's battery forecasts.
  • (5) Detailed information on the development status and product status of major binder companies.

[Shipments and M/S of PVDF binder manufacturers]

[Shipments and M/S of SBR binder manufacturers]

[Binder cost analysis for 4680 cells for Tesla]

  • Cathode: NCM811, Anode: Si series
  • PVDF cathode binder consumption and cost for a 1 GWh cell: Approx. 38 tons, KRW 1.546 billion
  • PAA anode binder consumption and cost for a 1 GWh cell: Approx. 24 tons, KRW 0.823 billion


[A schematic of the dry and wet processes for electrode fabrication]

Table of Contents

1. Binder Overview

  • 1.1. Introduction
  • 1.2. Definition, Role, and Requirements
    • 1.2.1. Role and Features
    • 1.2.2. Requirements
  • 1.3. Categories and Types
    • 1.3.1. Types
  • 1.4. Operation Mechanism

2. Types of binders and R&D practices

  • 2.1. Binders for Cathodes
    • 2.1.1. Non-Aqueous Binders
    • 2.1.2. Industry Status of PVDF Cathode Binders
    • 2.1.3. (CMC+SBR) Industry Status of Anode Binders
    • 2.1.4. Water-based Binders
    • 2.1.5. Other binders
  • 2.2. Binders for Anodes
    • 2.2.1. Insertable Anode Binder
      • 2.2.1.1. Binders for Graphite Electrodes
      • 2.2.1.2. Anode Binder for LTO
    • 2.2.2. Alloy Anode Binders
      • 2.2.2.1. Linear Polymer Binders
      • 2.2.2.2. Crosslinked Polymer Binders
      • 2.2.2.3. Branched and Extra-Large Polymer Binders
      • 2.2.2.4. Conductive Polymer Binders
  • 2.3. Binder for Next-Generation Batteries (1)
    • 2.3.1. Binders for Lithium-Sulfur (Li-S) Batteries
    • 2.3.2. Binders for Dry Process
  • 2.4. Binder for Next-Generation Batteries (2)
    • 2.4.1. Binders for Solid Electrolytes
      • 2.4.1.1. Overview of All-Solid-State Batteries
      • 2.4.1.2. Sulfide-based All-Solid-State Battery Technology
      • 2.4.1.3. Manufacturing of All-Solid-State Cells and the Purpose of Binders
      • 2.4.1.4. Binder Technology for Cathodes
        • 2.4.1.4.1. Binder Technology for Wet Processes
        • 2.4.1.4.2. Binder Technology for Dry Processes
      • 2.4.1.5. Binder Technology for Electrolyte Layers
      • 2.4.1.6. Binder Technology for Anodes
        • 2.4.1.6.1. Binder Technology for Graphite-Based Anodes
        • 2.4.1.6.2. Next Generation Binder Technology for Anodes

3. Binder Market

  • 3.1. Overall Outlook for the Binders Market
  • 3.2. PVDF Market Outlook for Global LIBs
    • 3.2.1. Global Battery Market Demand
    • 3.2.2. Global LIB Battery Binder Demand Outlook
    • 3.2.3. LIB Battery Binder Price Outlook
    • 3.2.4. LIB Battery Binder Market Size Outlook
    • 3.2.5. Global LFP Battery Demand and Cathode Material Demand Outlook
    • 3.2.6. PTFE for LFP Batteries Price and Market Outlook
    • 3.2.7. PTFE Binder Usage for LFP Batteries
    • 3.2.8. Market Outlook for Binders for Silicon-based Cathodes
    • 3.2.9. Silicon-based Anode Material Market Outlook
    • 3.2.10. PAA Binders for Silicon Anode Market Outlook
    • 3.2.11. Binder cost analysis for 4680 batteries for Tesla
    • 3.2.12. Shipments and M/S of PVDF Binder Manufacturers
    • 3.2.13. Shipments and M/S of SBR Binder Manufacturers
    • 3.2.14. Shipments and M/S of CMC Binder Manufacturers

4. Binder Manufacturer Status

  • [1] Arkema
  • [2] BASF SE
  • [3] Solvay
  • [4] Kureha
  • [5] ZEON
  • [6] JSR
  • [7] Fujian Blue Ocean Black Stone
  • [8] Dupont
  • [9] Ashland Inc
  • [10] MTI Corp.
  • [11] TRINSEO
  • [12] Xinxiang Jinbang Power Technology
  • [13] Lihong Fine Chemical
  • [14] Chemtros
  • [15] Hansol Chemical
  • [16] Kumho Petrochemical
  • [17] Daikin Industry
  • [18] Nanografi Nano Technology
  • [19] Nippon Paper Group
  • [20] APV Engineered Coatings LLC
  • [21] Sichuan Indigo Materials Science & Technology
  • [22] Guangzhou Songbai Chemical Co
  • [23] Nippon A&L Inc
  • [24] Daicel Miraizu Ltd
  • [25] Sinochem Group Co
  • [26] Ube Corp.
  • [27] AOT Battery Equipment Technology
  • [28] Shanghai 3F New Materials
  • [29] GL Chem

5. Appendix [For reference]

6. References

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦