½ÃÀ庸°í¼­
»óǰÄÚµå
1750500

ºñÈ­ºØ¼Ò(BAs) ½ÃÀå : ½ÃÀå ±âȸ, ¼ºÀå ÃËÁø¿äÀÎ, »ê¾÷ µ¿Ç⠺м®, ¿¹Ãø(2025-2034³â)

Boron Arsenide (BAs) Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Global Market Insights Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 235 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ ºñÈ­ºØ¼Ò(BAs) ½ÃÀåÀº 2024³â¿¡´Â 4,360¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, CAGR 18.3%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2034³â¿¡´Â 2¾ï 3,250¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

ÀÌ ´«ºÎ½Å È®´ë¿¡´Â ´Ù¾çÇÑ °í¼º´É ¿ëµµ¿¡ À־ ÷´Ü ¹ÝµµÃ¼ Àç·á ¼ö¿ä Áõ°¡°¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. »ê¾÷°è°¡ Á¡Á¡ ¼ÒÇüÈ­, °íÁÖÆÄ µ¿ÀÛ, ¿­È¿À²À» ¿ì¼±½ÃÇÏ°Ô µÊ¿¡ µû¶ó, ºñÈ­ºØ¼Ò´Â ±× Ź¿ùÇÑ ¿­Àüµµ¼º°ú ¶Ù¾î³­ ij¸®¾î À̵¿µµ·Î ÀÎÇØ ¼±ÅÃÇØ¾ß ÇÒ Àç·á·Î ºÎ»óÇØ ¿Ô½À´Ï´Ù. Åë½Å°ú ¼ÒºñÀÚ¿ë ÀüÀÚ±â±â¿¡¼­ ¿¡³ÊÁö ½Ã½ºÅÛ ¹× ¹æÀ§ ±â¼ú¿¡ À̸£±â±îÁö °í¼º´É ¹ÝµµÃ¼ÀÇ ÅëÇÕÀº Á¦Ç° Çõ½Å°ú ¿¡³ÊÁö ÃÖÀûÈ­ÀÇ Áß½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù. ½Ç¸®Äܰú °°Àº ±âÁ¸ Àç·á°¡ ¼º´ÉÀÇ ÇѰ迡 °¡±î¿öÁö¸é¼­ »ê¾÷°è´Â Á¡Â÷ ´õ ¶Ù¾î³­ ³»±¸¼º°ú ÀÛµ¿ È¿À²À» Á¦°øÇÏ´Â ´ëü Àç·á·Î ´«À» µ¹¸®°í ÀÖ½À´Ï´Ù. ºñÈ­ºØ¼Ò´Â ±× µ¶Æ¯ÇÑ ¹°¸®Àû Ư¼ºÀ» »ì·Á Â÷¼¼´ë ÀÏ·ºÆ®·Î´Ð½º·ÎÀÇ ÀÌÇàÀ» ÃßÁøÇÏ´Â Áß¿äÇÑ Àç·á Áß Çϳª·Î ÁÖ¸ñÀ» ¹Þ°í ÀÖ½À´Ï´Ù.

ºñÈ­ºØ¼Ò(BAs) Market-IMG1

¿ª»çÀûÀ¸·Î È­ÇÕ¹° ¹ÝµµÃ¼·ÎÀÇ ÀüȯÀº ³ôÀº ½ºÆ®·¹½º µ¿ÀÛ Á¶°Ç ÇÏ¿¡¼­ ½Ç¸®ÄÜÀ» ´É°¡ÇÏ´Â Àç·áÀÇ Çʿ伺ÀÌ µ¿±â°¡ µÇ¾î ¿Ô½À´Ï´Ù. ºñÈ­ºØ¼Ò´Â ´Ù¸¥ ´ëü¹°°ú ÇÔ²² ÀÌ ÀÌÇàÀÇ ½Å·ÚÇÒ ¼ö ÀÖ´Â ¼Ö·ç¼ÇÀ¸·Î ¿¬±¸µÇ°í ÀÖ½À´Ï´Ù. ¿ä±¸°¡ ¾î·Á¿î ȯ°æ¿¡¼­ È¿À²ÀûÀ¸·Î ±â´ÉÇÏ´Â Àç·áÀÇ Å½±¸°¡ °è¼ÓµÇ´Â °¡¿îµ¥, ºñÈ­ºØ¼Ò´Â ¿©·¯ ¿ëµµ ºÐ¾ß¿¡¼­ ±× À¯¿ë¼ºÀ» °è¼Ó Áõ¸íÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¹üÀ§
½ÃÀÛ ¿¬µµ 2024³â
¿¹Ãø ¿¬µµ 2025-2034³â
½ÃÀÛ ±Ý¾× 4,360¸¸ ´Þ·¯
¿¹Ãø ±Ý¾× 2¾ï 3,250¸¸ ´Þ·¯
CAGR 18.3%

Á¦Ç° ºÎ¹® Áß¿¡¼­ ºñÈ­ºØ¼Ò ºÐ¸»ÀÌ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇßÀ¸¸ç, 2024³âÀÇ Æò°¡¾×Àº 1,570¸¸ ´Þ·¯¿´½À´Ï´Ù. ÀÌ ºÎ¹®Àº 2025-2034³â CAGR 17.7%·Î Àü¸ÁµÇ°í ÀÖ½À´Ï´Ù. ÀÌ Ä«Å×°í¸®ÀÇ ²ÙÁØÇÑ ¼ºÀåÀº ÁÖ·Î ÀûÃþ Á¶Çü°ú ºÐ¸» ¾ß±Ý¿¡¼­ÀÇ ¿ëµµ È®´ë¿¡ ±âÀÎÇϰí ÀÖ½À´Ï´Ù. º¹ÇÕ Àç·áÀÇ °³¹ß ¶ÇÇÑ ºÐ¸» ºÎ¹®ÀÇ »ó½ÂÀ» ÁöÁöÇÏ´Â ÀÏÀÍÀ» ´ã´çÇϰí ÀÖ½À´Ï´Ù. ÃֽŠ¿¡³ÊÁö ½Ã½ºÅÛ°ú ÀüÀÚ±â±â¿¡ Á¢¸ñÇϱâ À§ÇØ Á¦Á¶»ç´Â ¾ÈÁ¤ÀûÀÎ ¿­Àüµµ¼º ¹°ÁúÀ» ¿ä±¸Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù.

°áÁ¤¼º ºñÈ­ºØ¼Òµµ ±× Ź¿ùÇÑ ±¸Á¶Àû ¹«°á¼º°ú °íÁÖÆÄ µ¿ÀÛ Á¶°Ç ÇÏ¿¡¼­ÀÇ ¼º´É¿¡ ÀÇÇØ Àα⸦ ¸ðÀ¸°í ÀÖ½À´Ï´Ù. °áÁ¤Çü¿¡ ´ëÇÑ ¼ö¿ä´Â ÀüÀÚ µð¹ÙÀ̽º°¡ º¸´Ù ¼ÒÇüÀÌ°í °í¼º´ÉÀÌ µÊ¿¡ µû¶ó ³ô¾ÆÁö°í ÀÖÀ¸¸ç, ¼ÒÇüÈ­Çϸ鼭µµ °íÈ¿À² ½Ã½ºÅÛÀ¸·ÎÀÇ ½ÃÇÁÆ®¸¦ ¹Ý¿µÇϰí ÀÖ½À´Ï´Ù. ÀÌ µ¿ÇâÀº ¿­°ü¸®³ª ¼º´ÉÀÇ ¾ÈÁ¤¼ºÀ» Èñ»ý½ÃŰÁö ¾Ê°í °íµµÀÇ ±â´ÉÀ» Áö¿øÇÒ ¼ö ÀÖ´Â ¹ÝµµÃ¼ÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ´Â °ÍÀÌ ¹è°æ¿¡ ÀÖ½À´Ï´Ù.

ºñÈ­ºØ¼ÒÀÇ ¹Ú¸·Àº Ç÷º¼­ºí ÀÏ·ºÆ®·Î´Ð½º¿Í Æ÷Åä´Ð½º¿¡ ÇʼöÀûÀÔ´Ï´Ù. °í¿Â¿¡¼­ÀÇ ÀûÀÀ¼º°ú ½Å·Ú¼ºÀº ÁøÈ­ÇÏ´Â ÀüÀÚ ±â±â¿¡ ³»ÀåÇÏ´Â µ¥ ÀûÇÕÇÕ´Ï´Ù. ¿þ¾î·¯ºí µð¹ÙÀ̽º³ª Ç÷º¼­ºí µð½ºÇ÷¹ÀÌ¿Í °°Àº °¡º±°í È¿À²ÀûÀÎ ±â¼ú·Î »ê¾÷ÀÌ ±â¿ï¾îÁö´Â °¡¿îµ¥ ¹Ú¸· ºÎ¹®Àº ºü¸£°Ô È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¹Ú¸·Àº, ¿¡³ÊÁö ¼Õ½ÇÀ» ÃÖ¼ÒÇÑÀ¸·Î ¾ïÁ¦Çϸ鼭 °íÈ¿À²À» ½ÇÇöÇÏ´Â °ÍÀ¸·Î, ¼ÒÇü ÀÏ·ºÆ®·Î´Ð½ºÀÇ Áøº¸¿¡ °øÇåÇϰí ÀÖ¾î, ºñÈ­ºØ¼Ò¸¦ Àå·¡ À¯¸ÁÇÑ Àç·á·Î¼­ ÇÑÃþ ´õ ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

È­Çбâ»ó¼ºÀå¹ý(CVD)Àº 2024³â 1710¸¸ ´Þ·¯·Î ÃÖ´ë ±â¼ú ºÐ¾ß¿´À¸¸ç, ¿¹Ãø ±â°£ µ¿¾È CAGR 17.3%·Î È®´ëµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Á¤¹Ð °øÇÐ Àç·á¿¡ ´ëÇÑ ¿ä±¸ÀÇ Áõ°¡°¡ °í¼º´É ¹ÝµµÃ¼ »ý»ê¿¡ À־ÀÇ CVDÀÇ ¿ªÇÒÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ÀÌ ¹æ¹ýÀº È¿À², ±ÕÀϼº, ±¸Á¶ ¾ÈÁ¤¼ºÀ» ³ôÀÎ Àç·á¸¦ Á¦Á¶Çϱâ À§ÇØ Á¡Á¡ ¼±È£µÇ°í ÀÖÀ¸¸ç, ÃÖ÷´Ü ¹ÝµµÃ¼ ¿ëµµÀÇ ¿ä±¸¿¡ ºÎÇÕÇϰí ÀÖ½À´Ï´Ù.

°í¾Ð °í¿Â(HPHT) ÇÕ¼ºÀº Ç×°ø¿ìÁÖ ¹× ¹æÀ§ ½Ã½ºÅÛ¿¡¼­ »ç¿ëµÇ´Â °í¼øµµ ºñÈ­ºØ¼Ò °áÁ¤ÀÇ Á¦Á¶¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ ÇÁ·Î¼¼½º¿¡¼­´Â ±Ø´ÜÀûÀΠȯ°æ Á¶°ÇÀ» °ßµô ¼ö ÀÖ´Â °áÇÔÀÌ ¾ø´Â Å« °áÁ¤À» Çü¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ »ê¾÷ÀÌ °íµµÀÇ ¿­Àû ¹× ±¸Á¶Àû ¼Ö·ç¼ÇÀ» Ãß±¸ÇÔ¿¡ µû¶ó, HPHT·Î Á¦Á¶µÈ Àç·áÀÇ °ü·Ã¼ºÀº °è¼Ó ³ô¾ÆÁ®, ½ÃÀåÀÇ ÇÑÃþ ´õ È®´ë¸¦ ÁöÁöÇϰí ÀÖ½À´Ï´Ù.

¿ëµµº°·Î´Â ¿­ °ü¸®´Â 2024³â¿¡ 1,930¸¸ ´Þ·¯¸¦ Â÷ÁöÇßÀ¸¸ç, 2025-2034³â CAGR 18%·Î ¼ºÀåÀÌ ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ºÎ¹® ½ÃÀå Á¡À¯À²Àº 44.1%·Î ¾ÐµµÀûÀÔ´Ï´Ù. ºñÈ­ºØ¼ÒÀÇ Å¹¿ùÇÑ ¿­Àüµµ¼ºÀº °í¼º´É ÀüÀÚ±â±âÀÇ ¿­°ü¸®¿¡ ±ÍÁßÇÑ ÀÚ»êÀÌ µÇ¾î ½Ã½ºÅÛÀÇ ¿¡³ÊÁö È¿À²À» Å©°Ô °³¼±ÇÒ °¡´É¼ºÀ» Á¦°øÇÕ´Ï´Ù. ÃÖ±Ù ÀüÀÚºÎǰÀÇ º¹ÀâÈ­¿¡ µû¶ó È¿°úÀûÀÎ ¿­¹æ»êÀÌ ¿ì¼±»çÇ×ÀÌ µÇ°í ÀÖÀ¸¸ç, ºñÈ­ºØ¼Ò´Â ÄÄÆÑÆ®ÇÑ °íÃâ·Â µð¹ÙÀ̽ºÀÇ ³Ã°¢±â±¸¿¡ ¼³µæ·Â ÀÖ´Â ¼Ö·ç¼ÇÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ È¿À²ÀûÀÎ ¿­Á¦¾î¿¡ ´ëÇÑ ¿ä±¸°¡ °è¼Ó °¡¼ÓÈ­µÇ°í ÀÖ´Â °¡¿îµ¥, µ¥ÀÌÅͼ¾ÅÍ¿Í Â÷¼¼´ë ÀüÀÚ±â±â¸¦ Æ÷ÇÔÇÑ ÄÄÇ»ÆÃ ȯ°æ¿¡¼­µµ ºñÈ­ºØ¼ÒÀÇ »ç¿ëÀÌ ´ëÆø Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼¼°è µðÁöÅÐ ÀÎÇÁ¶ó°¡ È®´ëµÇ°í ÄÄÇ»ÆÃ ¼ö¿ä°¡ ½ÉÈ­µÊ¿¡ µû¶ó ³Ã°¢ ½Ã½ºÅÛ °³¼±¿¡¼­ ºñÈ­ºØ¼ÒÀÇ ¿ªÇÒÀº Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù.

¹Ì±¹¿¡¼­ ºñÈ­ºØ¼ÒÀÇ ±¹³» »ý»êÀº ¿©ÀüÈ÷ Á¦ÇѵǾî ÀÖÀ¸¸ç, ±× °á°ú Áõ°¡ÇÏ´Â ¼ö¿ä¿¡ ´ëÀÀÇϱâ À§Çؼ­´Â ¼öÀÔ Àç·á¿¡ ÀÇÁ¸ÇÏÁö ¾ÊÀ» ¼ö ¾ø°Ô µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °ø±Þ µ¿ÇâÀº ´Ù¾çÇÑ ºÐ¾ßÀÇ ±â¼ú Áøº¸¸¦ µÞ¹ÞħÇÏ´Â °í¼øµµ ¹ÝµµÃ¼ Àç·áÀÇ È®º¸°¡ Àü·«ÀûÀ¸·Î Áß¿äÇÔÀ» º¸¿©ÁÝ´Ï´Ù. Áö±Ý±îÁö´Â ¼öÀÔǰÀÌ ¼Òºñ ¿ä±¸¸¦ ÃæÁ·½ÃÄÑ ¿ÔÁö¸¸, ±¹³» ¿ëµµÀÇ Áõ°¡¿¡ ÀÇÇØ, ¹Ì±¹Àº ³»ºÎ Á¦Á¶ ¹× Á¶´Þ Àü·«ÀÇ ¸ð»öÀ» °­¿ä´çÇϰí ÀÖ½À´Ï´Ù.

¼¼°èÀûÀ¸·Î, ºñÈ­ºØ¼Ò ½ÃÀåÀº ±Þ¼ÓÇÑ ¼ºÀåÀ» ÀÌ·ç°í ÀÖÀ¸¸ç, ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ ÇöÀç ÃÖ´ëÀÇ Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ±â¾÷µéÀº ÀüÀÚ, ¿¡³ÊÁö, Ç×°ø ¿ìÁÖ, Åë½Å »ê¾÷ÀÇ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇϱâ À§ÇØ ºñÈ­ºØ¼Ò Àç·áÀÇ °ø±Þ¸Á ¹× »ý»ê ´É·Â °­È­¿¡ ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼¿Í ½ÅÀç»ý ¿¡³ÊÁö ºÐ¾ß·ÎÀÇ ±â¼úÇõ½Å°ú ÀÚº»À¯ÀÔÀÌ Áö¼ÓµÊ¿¡ µû¶ó ºñÈ­ºØ¼ÒÀÇ ±â¼¼´Â ÇâÈÄ 10³â°£ Áö¼ÓµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý ¹× ¹üÀ§

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ¾÷°è ÀλçÀÌÆ®

  • »ýÅÂ°è ºÐ¼®
    • ¹ë·ùüÀο¡ ¿µÇâÀ» ÁÖ´Â ¿äÀÎ
    • ÀÌÀÍ·ü ºÐ¼®
    • Çõ½Å
    • Àü¸Á
    • Á¦Á¶¾÷ÀÚ
    • ¸®¼¿·¯
  • Æ®·³ÇÁ Á¤±Ç¿¡ ÀÇÇÑ °ü¼¼¿¡ ´ëÇÑ ¿µÇâ
    • ¹«¿ª¿¡ ¹ÌÄ¡´Â ¿µÇâ
      • ¹«¿ª·®ÀÇ È¥¶õ
      • º¸º¹ Á¶Ä¡
    • ¾÷°è¿¡ ¹ÌÄ¡´Â ¿µÇâ
      • °ø±ÞÃøÀÇ ¿µÇâ(¿øÀç·á)
        • ÁÖ¿ä ¿øÀç·áÀÇ °¡°Ý º¯µ¿
        • °ø±Þ¸Á À籸¼º
        • »ý»ê ºñ¿ë¿¡ ¹ÌÄ¡´Â ¿µÇâ
      • ¼ö¿äÃøÀÇ ¿µÇâ(ÆÇ¸Å°¡°Ý)
        • ÃÖÁ¾ ½ÃÀå¿¡ ´ëÇÑ °¡°Ý Àü´Þ
        • ½ÃÀå Á¡À¯À² µ¿Çâ
        • ¼ÒºñÀÚÀÇ ¹ÝÀÀ ÆÐÅÏ
    • ¿µÇâÀ» ¹Þ´Â ÁÖ¿ä ±â¾÷
    • Àü·«ÀûÀÎ ¾÷°è ´ëÀÀ
      • °ø±Þ¸Á À籸¼º
      • °¡°Ý ¼³Á¤ ¹× Á¦Ç° Àü·«
      • Á¤Ã¥°ü¿©
    • Àü¸Á ¹× ÇâÈÄ °ËÅä »çÇ×
  • ¹«¿ª Åë°è(HSÄÚµå)
    • ÁÖ¿ä ¼öÃâ±¹
    • ÁÖ¿ä ¼öÀÔ±¹
  • ÀÌÀÍ·ü ºÐ¼®
  • ÁÖ¿ä ´º½º ¹× ´ëó
  • ±ÔÁ¦ »óȲ
  • ¿µÇâ¿äÀÎ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ÀÏ·ºÆ®·Î´Ð½º ¾÷°è¿¡¼­ÀÇ °í¿­ Àüµµ¼º Àç·á ¼ö¿ä Áõ°¡
      • ¹ÝµµÃ¼ ¹× ±¤ÀüÀÚ µð¹ÙÀ̽º Á¦Á¶ ±â¼úÀÇ ±Þ¼ÓÇÑ Áøº¸
      • ¼ÒÇü ÀüÀÚ±â±â¿¡¼­ È¿À²ÀûÀÎ ¿­°ü¸® ¼Ö·ç¼Ç ¼ö¿ä Áõ°¡
      • Â÷¼¼´ë Æ®·£Áö½ºÅÍ ¹× Ĩ ³Ã°¢¿¡¼­ ºñÈ­ºØ¼ÒÀÇ Ã¤¿ë Áõ°¡
    • ¾÷°èÀÇ ÀáÀçÀû À§Çè ¹× °úÁ¦
      • ºñÈ­ºØ¼ÒÀÇ ÇÕ¼º ¹× Á¤Á¦¿¡ µû¸¥ ³ôÀº »ý»ê ºñ¿ë
      • ´ë±Ô¸ð »ó¾÷¿ë °¡¿ë¼º Á¦ÇÑ ¹× °ø±Þ¸Á Á¦¾à
  • ¼ºÀå °¡´É¼º ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦4Àå °æÀï ±¸µµ

  • °æÀï ±¸µµ
    • ±â¾÷ °³¿ä
    • Á¦Ç° Æ÷Æ®Æú¸®¿À¿Í »ç¾ç
    • SWOT ºÐ¼®
  • ±â¾÷ÀÇ ½ÃÀå Á¡À¯À² ºÐ¼®
    • ±â¾÷º° ¼¼°è ½ÃÀå Á¡À¯À²
    • Áö¿ª ½ÃÀå Á¡À¯À² ºÐ¼®
    • Á¦Ç° Æ÷Æ®Æú¸®¿À Á¡À¯À² ºÐ¼®
  • Àü·«Àû ³ë·Â
    • ÇÕº´ ¹× Àμö
    • ÆÄÆ®³Ê½Ê ¹× Çù¾÷
    • Á¦Ç° ¹ß¸Å ¹× Çõ½Å
    • È®´ë °èȹ ¹× ÅõÀÚ
  • ±â¾÷ º¥Ä¡¸¶Å·
    • Á¦Ç° Çõ½ÅÀÇ º¥Ä¡¸¶Å©
    • °¡°Ý Àü·« ºñ±³
    • ¹èÀü¸ÁÀÇ ºñ±³
    • °í°´ ¼­ºñ½º ¹× Áö¿øÀÇ ºñ±³

Á¦5Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : Çüź°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • ºÐ¸»
    • ³ª³ë ÆÄ¿ì´õ
    • ¸¶ÀÌÅ©·Î ÆÄ¿ì´õ
    • ±âŸ ºÐ¸» ÇüÅÂ
  • °áÁ¤
    • ´Ü°áÁ¤
    • ´Ù°áÁ¤
    • ¹Ú¸·
  • ¹úÅ© Àç·á
  • ±âŸ Çü½Ä

Á¦6Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : ¼øµµº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • 99% ¹Ì¸¸
  • 99%-99.9%
  • 99.9%-99.99%
  • 99.99% ÀÌ»ó

Á¦7Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : Á¦Á¶ ¹æ¹ýº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • È­ÇÐ ÁõÂø(CVD)
    • ´ë±â¾Ð CVD
    • Àú¾Ð CVD
    • ÇöóÁ CVD
  • °í¾Ð °í¿Â(HPHT) ÇÕ¼º
  • ºÐÀÚ¼± ¿¡ÇÇÅýÃ(MBE)
  • Ç÷°½º ¼ºÀå¹ý
  • ±âŸ Á¦Á¶¹æ¹ý

Á¦8Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : ¿ëµµº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • ¿­ °ü¸®
    • ¹æ¿­ÆÇ
    • ¿­Àüµµ¼º Àç·á
    • È÷Æ® ½ºÇÁ·¹´õ
    • ±âŸ ¿­ °ü¸® ¿ëµµ
  • ÀüÀÚ±â±âÀÇ ³Ã°¢
    • °íÃâ·Â ÀÏ·ºÆ®·Î´Ð½º
    • µ¥ÀÌÅͼ¾ÅÍ
    • °¡Àü
    • ±âŸ ÀüÀÚ±â±â ³Ã°¢ ¿ëµµ
  • ¹ÝµµÃ¼ µð¹ÙÀ̽º
    • ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º
    • ¿ÉÅäÀÏ·ºÆ®·Î´Ð½º
    • °íÁÖÆÄ µð¹ÙÀ̽º
    • ±âŸ ¹ÝµµÃ¼ ¿ëµµ
  • ¿¬±¸°³¹ß
  • ±âŸ ¿ëµµ

Á¦9Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • ÀÏ·ºÆ®·Î´Ð½º ¹× ¹ÝµµÃ¼
    • ÁýÀûȸ·Î Á¦Á¶¾÷ü
    • ÀüÀÚ ºÎǰ Á¦Á¶¾÷ü
    • ¹ÝµµÃ¼ ÀåÄ¡ Á¦Á¶¾÷ü
  • Åë½Å
  • ÀÚµ¿Â÷ ¹× ¿î¼Û
    • Àü±âÀÚµ¿Â÷
    • ±âÁ¸ Â÷·®
    • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ¿¡³ÊÁö ¹× Àü·Â
  • »ê¾÷±â±â
  • ¿¬±¸±â°ü ¹× Çмú±â°ü
  • ±âŸ ÃÖÁ¾ ÀÌ¿ë »ê¾÷

Á¦10Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : Áö¿ªº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ÀÌÅ»¸®¾Æ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • È£ÁÖ
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ¾Æ¸£ÇîÆ¼³ª
    • ±âŸ ¶óƾ¾Æ¸Þ¸®Ä«
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ³²¾ÆÇÁ¸®Ä«
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

  • II-VI Incorporated
  • Momentive Performance Materials Inc.
  • KYMA Technologies, Inc.
  • American Elements
  • Nanoshel LLC
  • Stanford Advanced Materials
  • SkySpring Nanomaterials, Inc.
  • Alfa Aesar(Thermo Fisher Scientific)
  • Materion Corporation
  • DOWA Electronics Materials Co.,Ltd.
  • Shin-Etsu Chemical Co., Ltd.
  • Sumitomo Electric Industries, Ltd.
  • Heraeus Holding GmbH
  • Indium Corporation
  • Others
AJY 25.06.25

The Global Boron Arsenide (BAs) Market was valued at USD 43.6 million in 2024 and is estimated to grow at a CAGR of 18.3% to reach USD 232.5 million by 2034. This impressive expansion is fueled by the rising demand for advanced semiconductor materials across various high-performance applications. As industries increasingly prioritize miniaturization, high-frequency operations, and thermal efficiency, boron arsenide has emerged as a material of choice due to its outstanding thermal conductivity and superior carrier mobility. From telecommunications and consumer electronics to energy systems and defense technologies, the integration of high-performance semiconductors has become central to product innovation and energy optimization. As traditional materials such as silicon near their performance limits, industries are gradually turning to alternatives that offer better durability and operational efficiency. Boron arsenide, with its unique physical properties, is gaining traction as one of the key materials driving the transition toward next-generation electronics.

Boron Arsenide (BAs) Market - IMG1

Historically, the switch to compound semiconductors was motivated by the need for materials that outperform silicon under high-stress operational conditions. Boron arsenide, along with other alternatives, is being investigated as a reliable solution in this shift. With the ongoing exploration of materials that can function efficiently in demanding environments, boron arsenide continues to prove its utility in multiple application areas.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$43.6 Million
Forecast Value$232.5 Million
CAGR18.3%

Among product segments, boron arsenide powder represented the largest share, with a valuation of USD 15.7 million in 2024. This segment is expected to witness a CAGR of 17.7% from 2025 to 2034. The steady growth of this category is primarily attributed to its expanding use in additive manufacturing and powder metallurgy. The development of composite materials also plays a role in supporting the powder segment's rise, as manufacturers seek stable and thermally conductive substances for integration into modern energy systems and electronics.

Crystalline boron arsenide is also gaining popularity due to its exceptional structural integrity and ability to perform under high-frequency operating conditions. The demand for crystal forms is rising as electronic devices become more compact and powerful, reflecting the shift toward miniaturized yet high-efficiency systems. This trend is driven by the growing need for semiconductors that can support advanced functionality without sacrificing thermal management or performance stability.

Thin films of boron arsenide are becoming essential in flexible electronics and photonics. Their adaptability and reliability at elevated temperatures make them suitable for incorporation into evolving electronic devices. With industries leaning toward lightweight, efficient technologies such as wearable devices and flexible displays, the thin film segment is expanding rapidly. Thin films are contributing to the advancement of compact electronics by offering high efficiency with minimal energy loss, further positioning boron arsenide as a future-forward material.

Chemical vapor deposition (CVD) was the largest technology segment in 2024, valued at USD 17.1 million, and is forecasted to expand at a CAGR of 17.3% during the forecast period. The growing need for precision-engineered materials has elevated the role of CVD in the production of high-performance semiconductors. This method is increasingly favored for producing materials with enhanced efficiency, uniformity, and structural stability, aligning with the demands of cutting-edge semiconductor applications.

High-pressure high-temperature (HPHT) synthesis is crucial for producing high-purity boron arsenide crystals used in aerospace and defense systems. This process allows for the formation of large, defect-free crystals capable of withstanding extreme environmental conditions. As these industries pursue advanced thermal and structural solutions, the relevance of HPHT-produced materials continues to rise, supporting further market expansion.

In terms of application, thermal management accounted for USD 19.3 million in 2024, with a projected CAGR of 18% between 2025 and 2034. This segment held a dominant market share of 44.1%. The exceptional thermal conductivity of boron arsenide makes it a valuable asset in managing heat in high-performance electronics, offering the potential to significantly improve the energy efficiency of systems. With the rising complexity of modern electronic components, effective heat dissipation has become a priority, and boron arsenide offers a compelling solution for cooling mechanisms in compact, high-output devices.

The use of boron arsenide is also expected to grow significantly in computing environments, including data centers and next-gen electronics, as the demand for efficient thermal control continues to accelerate. As global digital infrastructure expands and computing demands intensify, the role of boron arsenide in improving cooling systems becomes increasingly important.

In the United States, domestic production of boron arsenide remains limited, resulting in a reliance on imported materials to meet growing demand. This supply dynamic underlines the strategic importance of securing high-purity semiconductor materials to support technological advancements across multiple sectors. While imports have historically met consumption needs, rising domestic applications are pushing the U.S. to explore internal manufacturing and sourcing strategies.

Globally, the boron arsenide market is witnessing rapid growth, particularly in the Asia Pacific region, which currently holds the largest share. Key players are channeling investments into enhancing the supply chain and production capabilities for boron arsenide materials to meet the increasing demands across electronics, energy, aerospace, and telecommunication industries. With continued innovations and capital inflows into semiconductor and renewable energy sectors, the momentum behind boron arsenide is expected to remain strong throughout the next decade.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Market scope & definitions
  • 1.2 Base estimates & calculations
  • 1.3 Forecast calculations
  • 1.4 Data sources
    • 1.4.1 Primary
    • 1.4.2 Secondary
      • 1.4.2.1 Paid sources
      • 1.4.2.2 Public sources

Chapter 2 Executive Summary

  • 2.1 Industry synopsis, 2021-2034

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
    • 3.1.1 Factor affecting the value chain
    • 3.1.2 Profit margin analysis
    • 3.1.3 Disruptions
    • 3.1.4 Outlook
    • 3.1.5 Manufacturers
    • 3.1.6 Distributors
  • 3.2 Trump administration tariffs
    • 3.2.1 Impact on trade
      • 3.2.1.1 Trade volume disruptions
      • 3.2.1.2 Retaliatory measures
    • 3.2.2 Impact on the industry
      • 3.2.2.1 Supply-side impact (raw materials)
        • 3.2.2.1.1 Price volatility in key materials
        • 3.2.2.1.2 Supply chain restructuring
        • 3.2.2.1.3 Production cost implications
      • 3.2.2.2 Demand-side impact (selling price)
        • 3.2.2.2.1 Price transmission to end markets
        • 3.2.2.2.2 Market share dynamics
        • 3.2.2.2.3 Consumer response patterns
    • 3.2.3 Key companies impacted
    • 3.2.4 Strategic industry responses
      • 3.2.4.1 Supply chain reconfiguration
      • 3.2.4.2 Pricing and product strategies
      • 3.2.4.3 Policy engagement
    • 3.2.5 Outlook and Future Considerations
  • 3.3 Trade statistics (HS Code)
    • 3.3.1 Major exporting countries
    • 3.3.2 Major importing countries
  • 3.4 Profit margin analysis
  • 3.5 Key news & initiatives
  • 3.6 Regulatory landscape
  • 3.7 Impact forces
    • 3.7.1 Growth drivers
      • 3.7.1.1 Increasing demand for high thermal conductivity materials in electronics industry
      • 3.7.1.2 Rapid advancements in semiconductor and optoelectronic device manufacturing technologies
      • 3.7.1.3 Growing need for efficient thermal management solutions in compact electronics
      • 3.7.1.4 Rising adoption of boron arsenide in next-gen transistors and chip cooling
    • 3.7.2 Industry pitfalls & challenges
      • 3.7.2.1 High production costs associated with boron arsenide synthesis and purification
      • 3.7.2.2 Limited large-scale commercial availability and supply chain constraints
  • 3.8 Growth potential analysis
  • 3.9 Porter's analysis
  • 3.10 PESTEL analysis

Chapter 4 Competitive Landscape, 2024

  • 4.1 Competitive landscape
    • 4.1.1 Company overview
    • 4.1.2 Product portfolio and specifications
    • 4.1.3 Swot analysis
  • 4.2 Company market share analysis, 2024
    • 4.2.1 Global market share by company
    • 4.2.2 Regional market share analysis
    • 4.2.3 Product portfolio share analysis
  • 4.3 Strategic initiative
    • 4.3.1 Mergers and acquisitions
    • 4.3.2 Partnerships and collaborations
    • 4.3.3 Product launches and innovations
    • 4.3.4 Expansion plans and investments
  • 4.4 Company benchmarking
    • 4.4.1 Product innovation benchmarking
    • 4.4.2 Pricing strategy comparison
    • 4.4.3 Distribution network comparison
    • 4.4.4 Customer service and support comparison

Chapter 5 Market Estimates & Forecast, By Form, 2021-2034 (USD Million) (Kilo Tons)

  • 5.1 Key trends
  • 5.2 Powder
    • 5.2.1 Nano powder
    • 5.2.2 Micro powder
    • 5.2.3 Other powder forms
  • 5.3 Crystal
    • 5.3.1 Single crystal
    • 5.3.2 Polycrystalline
    • 5.3.3 Thin film
  • 5.4 Bulk material
  • 5.5 Other forms

Chapter 6 Market Estimates & Forecast, By Purity Level, 2021-2034 (USD Million) (Kilo Tons)

  • 6.1 Key trends
  • 6.2 <99%
  • 6.3 99% - 99.9%
  • 6.4 99.9% - 99.99%
  • 6.5 > 99.99%

Chapter 7 Market Estimates & Forecast, By Production Method, 2021-2034 (USD Million) (Kilo Tons)

  • 7.1 Key trends
  • 7.2 Chemical vapor deposition (CVD)
    • 7.2.1 Atmospheric pressure CVD
    • 7.2.2 Low pressure CVD
    • 7.2.3 Plasma-enhanced CVD
  • 7.3 High-pressure high-temperature (HPHT) synthesis
  • 7.4 Molecular beam epitaxy (MBE)
  • 7.5 Flux growth method
  • 7.6 Other production methods

Chapter 8 Market Estimates & Forecast, By Application, 2021-2034 (USD Million) (Kilo Tons)

  • 8.1 Key trends
  • 8.2 Thermal management
    • 8.2.1 Heat sinks
    • 8.2.2 Thermal interface materials
    • 8.2.3 Heat spreaders
    • 8.2.4 Other thermal management applications
  • 8.3 Electronics cooling
    • 8.3.1 High-power electronics
    • 8.3.2 Data centers
    • 8.3.3 Consumer electronics
    • 8.3.4 Other electronics cooling applications
  • 8.4 Semiconductor devices
    • 8.4.1 Power electronics
    • 8.4.2 Optoelectronics
    • 8.4.3 High-frequency devices
    • 8.4.4 Other semiconductor applications
  • 8.5 Research & development
  • 8.6 Other applications

Chapter 9 Market Estimates & Forecast, By End Use Industry, 2021-2034 (USD Million) (Kilo Tons)

  • 9.1 Key trends
  • 9.2 Electronics & semiconductor
    • 9.2.1 Integrated circuit manufacturers
    • 9.2.2 Electronic component manufacturers
    • 9.2.3 Semiconductor equipment manufacturers
  • 9.3 Telecommunications
  • 9.4 Automotive & transportation
    • 9.4.1 Electric vehicles
    • 9.4.2 Conventional vehicles
    • 9.4.3 Aerospace & defense
  • 9.5 Energy & power
  • 9.6 Industrial equipment
  • 9.7 Research institutions & academia
  • 9.8 Other end use industries

Chapter 10 Market Estimates & Forecast, By Region, 2021-2034 (USD Million) (Kilo Tons)

  • 10.1 Key trends
  • 10.2 North America
    • 10.2.1 U.S.
    • 10.2.2 Canada
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 France
    • 10.3.4 Spain
    • 10.3.5 Italy
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 China
    • 10.4.2 India
    • 10.4.3 Japan
    • 10.4.4 Australia
    • 10.4.5 South Korea
    • 10.4.6 Rest of Asia Pacific
  • 10.5 Latin America
    • 10.5.1 Brazil
    • 10.5.2 Mexico
    • 10.5.3 Argentina
    • 10.5.4 Rest of Latin America
  • 10.6 Middle East and Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 South Africa
    • 10.6.3 UAE
    • 10.6.4 Rest of Middle East and Africa

Chapter 11 Company Profiles

  • 11.1 II-VI Incorporated
  • 11.2 Momentive Performance Materials Inc.
  • 11.3 KYMA Technologies, Inc.
  • 11.4 American Elements
  • 11.5 Nanoshel LLC
  • 11.6 Stanford Advanced Materials
  • 11.7 SkySpring Nanomaterials, Inc.
  • 11.8 Alfa Aesar (Thermo Fisher Scientific)
  • 11.9 Materion Corporation
  • 11.10 DOWA Electronics Materials Co., Ltd.
  • 11.11 Shin-Etsu Chemical Co., Ltd.
  • 11.12 Sumitomo Electric Industries, Ltd.
  • 11.13 Heraeus Holding GmbH
  • 11.14 Indium Corporation
  • 11.15 Others
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦