½ÃÀ庸°í¼­
»óǰÄÚµå
1750411

±º»ç ½Ã¹Ä·¹ÀÌ¼Ç ¹× ÈÆ·Ã ½ÃÀå : ½ÃÀå ±âȸ, ¼ºÀå ÃËÁø¿äÀÎ, »ê¾÷ µ¿Ç⠺м®, ¿¹Ãø(2025-2034³â)

Military Simulation and Training Market Opportunity, Growth Drivers, Industry Trend Analysis, and Forecast 2025 - 2034

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Global Market Insights Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 170 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ ±º»ç ½Ã¹Ä·¹ÀÌ¼Ç ¹× ÈÆ·Ã ½ÃÀåÀº 2024³â¿¡´Â 137¾ï ´Þ·¯·Î Æò°¡µÇ¾ú°í, CAGR 5.3%·Î ¼ºÀåÇÒ Àü¸ÁÀ̸ç, 2034³â±îÁö´Â 228¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù.

±¹¹æ±ºÀÌ Çö½ÇÀûÀ̸鼭 °æÁ¦ÀûÀÎ ¼Ö·ç¼ÇÀ» ¿ä±¸ÇÏ´Â °¡¿îµ¥ ÇÏÀÌÅ×Å© ½Ã¹Ä·¹ÀÌ¼Ç Åø ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ½ÇÀü ÈÆ·ÃÀÌ ¸Å¿ì Áß¿äÇÏ´Ù´Â Á¡¿¡´Â º¯ÇÔÀÌ ¾øÁö¸¸ ½Ã¹Ä·¹ÀÌ¼Ç Ç÷§ÆûÀº ¿î¿ë»óÀÇ À§ÇèÀ» ÁÙÀ̰í Àåºñǰ ¸¶¸ð¿Í ¿¬·á ¼Òºñ µî ½ÇÀü ÈÆ·Ã°ú °ü·ÃµÈ ºñ¿ëÀ» ÃÖ¼ÒÈ­ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.

±º»ç ½Ã¹Ä·¹ÀÌ¼Ç ±³À° Market-IMG1

±×·¯³ª °ú°ÅÀÇ ¹«¿ª ¸¶Âû, ƯÈ÷ Áß±¹ ÀüÀÚ Á¦Ç°¿¡ ´ëÇÑ °ü¼¼´Â °ø±Þ¸ÁÀ» È¥¶õ½ÃŰ°í ¹Ì±¹ÀÇ ¹æÀ§ °è¾àÀÚÀÇ Á¦Á¶ ºñ¿ëÀ» »ó½Â½ÃÄ×½À´Ï´Ù. ÀΰøÁö´É(AI), µðÁöÅÐ Æ®À©, ¸ôÀÔÇü AR/VR°ú °°Àº ±â¼úÀÇ Áøº¸´Â ±º»ç ½Ã¹Ä·¹ÀÌ¼Ç ¹× ÈÆ·ÃÀÇ »óȲÀ» ÀϺ¯½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ» ÅëÇØ ¹æÀ§ ºÎ´ë´Â ¸Å¿ì º¹ÀâÇÏ°í ¿©·¯ ¿µ¿ª¿¡ °ÉÄ£ ½Ã³ª¸®¿À¸¦ ºñÇÒ µ¥ ¾ø´Â ¸®¾ó¸®Áò°ú È¿À²¼ºÀ¸·Î ½Ã¹Ä·¹À̼ÇÇÒ ¼ö ÀÖ°Ô µË´Ï´Ù. AI ÁÖµµ ÈÆ·Ã ½Ã½ºÅÛÀº »ç¿ëÀÚÀÇ Çൿ¿¡ ÀûÀÀÇÏ°í °³ÀÎÈ­µÈ ÇнÀ °æ·Î¸¦ Á¦°øÇÏ¸ç ½Ç½Ã°£ ÀÇ»ç°áÁ¤ ÆÐÅÏÀ» ±â¹ÝÀ¸·Î °á°ú¸¦ ¿¹ÃøÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. µðÁöÅÐ Æ®À©(¹°¸® ½Ã½ºÅÛÀÇ °¡»ó º¹Á¦Ç°)¿¡ ÀÇÇØ ¹æÀ§ ¿ä¿øÀº Àåºñǰ, Â÷·®, ȯ°æ Àüü¿¡¼­ ¾òÀ» ¼ö ÀÖ´Â ½Ç½Ã°£ µ¥ÀÌÅÍ¿Í ´ëÈ­ÇÒ ¼ö ÀÖ°Ô µÇ¾î º¸´Ù ¶Ù¾î³­ Àü·« ÀԾȰú ÀÛÀüÀÇ Á¤¹Ðµµ°¡ Çâ»óµË´Ï´Ù.

½ÃÀå ¹üÀ§
½ÃÀÛ ¿¬µµ 2024³â
¿¹Ãø ¿¬µµ 2025-2034³â
½ÃÀÛ ±Ý¾× 137¾ï ´Þ·¯
¿¹Ãø ±Ý¾× 228¾ï ´Þ·¯
CAGR 5.3%

½Ã¹Ä·¹ÀÌ¼Ç À¯Çüº°·Î´Â ±º»ç ½Ã¹Ä·¹ÀÌ¼Ç ¹× ÈÆ·Ã ½ÃÀåÀÇ ½ÇÀü ÈÆ·Ã ºÐ¾ß´Â 2024³â¿¡ 66¾ï 1,000¸¸ ´Þ·¯¸¦ âÃâÇß½À´Ï´Ù. °¡»ó ½Ã¹Ä·¹À̼ÇÀ̳ª °Ç¼³Àû ½Ã¹Ä·¹À̼ÇÀº Áøº¸Çϰí ÀÖÁö¸¸, ½ÇÀü ÈÆ·ÃÀº ÁøÂ¥ ÀüÅõ üÇèÀ» Á¦°øÇÑ´Ù´Â Á¡¿¡¼­´Â ¿©ÀüÈ÷ ºñÇÒ µ¥ ¾ø´Â °ÍÀ¸·Î, µ¿ÀûÀÎ ÀüÅõ ½Ã³ª¸®¿À¸¦ ÀçÇöÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¶Ç, °øµ¿ ÈÆ·Ã ¹Ì¼ÇÀÌ Áß½ÃµÇ°Ô µÊ¿¡ µû¶ó, ´ë±Ô¸ð ½ÇÀü ½Ã¹Ä·¹À̼ÇÀÇ Çʿ伺µµ ³ô¾ÆÁö°í ÀÖÀ¸¸ç, ·¹ÀÌÀú ±â¹ÝÀÇ ¹«±â ´ëü³ª ÇÏÀ̺긮µå ½Ã½ºÅÛÀÇ Çõ½Å¿¡ ÀÇÇØ, ±× È¿°ú´Â ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

±º»ç ½Ã¹Ä·¹ÀÌ¼Ç ¹× ÈÆ·Ã ½ÃÀå¿¡¼­ÀÇ °øÁß ½Ã¹Ä·¹ÀÌ¼Ç ºÎ¹®Àº Â÷¼¼´ë Ç×°ø±â¿Í UAVÀÇ µµÀÔÀÌ ÁøÇàµÇ¾î º¹ÀâÇÑ ÀÓ¹« °èȹ, ¾îºñ¿À´Ð½º ÈÆ·Ã, °íµµÀÇ Á¶Á¾¿ëÀ¸·Î ¼³°èµÈ °íµµ·Î Àü¹®È­µÈ ½Ã¹Ä·¹ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í, 2024³â¿¡´Â 56¾ï 3,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. ºñÇà ¿î¿ë ºñ¿ëÀÌ ³ô¾ÆÁö´Â °¡¿îµ¥ ½Ã¹Ä·¹ÀÌ¼Ç ±â¹Ý ÈÆ·ÃÀº ºñ¿ë ´ëºñ È¿°ú°¡ ³ô°í È¿À²ÀûÀÎ ´ëü ¼ö´ÜÀ» Á¦°øÇϸç, ƯÈ÷ Á¤ºñ¼ºÀÌ ³ôÀº Ç×°ø±â¿¡¼­´Â ±â¼ú °³¹ß¿¡ ÇÊ¿äÇÑ ½ÇÁ¦ ºñÇà ½Ã°£ ¼ö¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù.

¹Ì±¹ÀÇ ±º»ç ½Ã¹Ä·¹ÀÌ¼Ç ¹× ÈÆ·Ã ½ÃÀåÀº 2024³â¿¡ 43¾ï ´Þ·¯¸¦ âÃâÇßÀ¸¸ç, ±¹¹æºñÀÇ ´ëÆøÀûÀÎ Áõ°¡¿Í ÈÆ·Ã ÀÎÇÁ¶óÀÇ ±Ù´ëÈ­¿¡ ´ëÇÑ ÁßÁ¡ÀûÀÎ ´ëó°¡ ±× ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ±¹°¡´Â µðÁöÅÐ Æ®À© Å×Å©³î·ÎÁö¸¦ ÅëÇÕÇÑ Â÷¼¼´ë ½Ã¹Ä·¹ÀÌ¼Ç È¯°æ °³¹ßÀ» ÁøÇàÇϰí ÀÖÀ¸¸ç, º¸´Ù Á¤È®ÇÏ°í µ¥ÀÌÅͰ¡ dzºÎÇÑ Áغñ¸¦ À§ÇØ ÀüÀå »óȲÀ» ½Ç½Ã°£À¸·Î ¹Ý¿µÇÒ ¼ö ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ÇÕ¼º ȯ°æ°ú Ŭ¶ó¿ìµå º£À̽ºÀÇ ÈÆ·Ã ¿¡ÄÚ ½Ã½ºÅÛÀ» Áß½ÉÀ¸·Î ÇÑ ´ëó°¡ ³Î¸® ä¿ëµÇ°í ÀÖ¾î ºÎ´ë°¡ ¿µ¿ªÀ» ³Ñ¾î º¹ÀâÇÑ ÅëÇÕ ºÎ´ëÀÇ ½Ã³ª¸®¿À·Î °á¼ÓÇØ Ȱµ¿ÇÒ ¼ö ÀÖ°Ô µÇ¾î ÀÖ½À´Ï´Ù.

°æÀï ±¸µµ¿¡¼­ È®°íÇÑ ÁöÀ§¸¦ À¯ÁöÇϱâ À§ÇØ Lockheed Martin, Northrop Grumman, BAE Systems, CAE, Collins Aerospace, Saab, Thales, Elbit Systems, Boeing, Rheinmetall, L3Harris Technologies, ST Engineering, Kongsberg Maritime, Indra Sistemas, Leon Interactive Simulations µî ÁÖ¿ä ±â¾÷Àº ¿©·¯ ÇÙ½É Àü·«¿¡ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ¹æÀ§¼º°úÀÇ Á¦ÈÞ, ½ÅÈï ½ÃÀå ÁøÃâ, AR, AI, VR ±â´ÉÀÇ ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ µîÀÔ´Ï´Ù. ¸¹Àº ±â¾÷µéÀÌ ±âÁ¸ ½Ã¹Ä·¹ÀÌÅ͸¦ ¾÷±×·¹À̵åÇÏ°í ½Ç½Ã°£ µ¥ÀÌÅÍ¿Í Å©·Î½º µµ¸ÞÀÎ ÈÆ·Ã µµ±¸¸¦ Á¢¸ñÇϰí ÀÖÀ¸¸ç, ¿ø°Ý ÈÆ·ÃÀ» À§ÇØ Å¬¶ó¿ìµå ±â¹Ý Ç÷§ÆûÀ» ÅëÇÕÇϰí ÀÖ´Â ±â¾÷µµ ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý ¹× ¹üÀ§

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ¾÷°è ÀλçÀÌÆ®

  • ¾÷°è »ýÅÂ°è ºÐ¼®
  • Æ®·³ÇÁ Á¤±ÇÀÇ °ü¼¼¿¡ ´ëÇÑ ¿µÇâ
    • ¹«¿ª¿¡ ¹ÌÄ¡´Â ¿µÇâ
      • ¹«¿ª·®ÀÇ È¥¶õ
      • º¸º¹ Á¶Ä¡
    • ¾÷°è¿¡ ¹ÌÄ¡´Â ¿µÇâ
      • °ø±ÞÃøÀÇ ¿µÇâ
        • ÁÖ¿ä ºÎǰÀÇ °¡°Ý º¯µ¿
        • °ø±Þ¸Á À籸¼º
        • »ý»ê ºñ¿ë¿¡ ¹ÌÄ¡´Â ¿µÇâ
      • ¼ö¿äÃøÀÇ ¿µÇâ(ÆÇ¸Å°¡°Ý)
        • ÃÖÁ¾ ½ÃÀå¿¡ ´ëÇÑ °¡°Ý Àü´Þ
        • ½ÃÀå Á¡À¯À² µ¿Çâ
        • ¼ÒºñÀÚÀÇ ¹ÝÀÀ ÆÐÅÏ
    • ¿µÇâÀ» ¹Þ´Â ÁÖ¿ä ±â¾÷
    • Àü·«Àû ¾÷°è ´ëÀÀ
      • °ø±Þ¸Á À籸¼º
      • °¡°Ý ¼³Á¤ ¹× Á¦Ç° Àü·«
      • Á¤Ã¥°ü¿©
    • Àü¸Á ¹× ÇâÈÄ °ËÅä »çÇ×
  • ¾÷°è¿¡ ¹ÌÄ¡´Â ¿µÇâ¿äÀÎ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ¼¼°èÀÇ ±¹¹æ¿¹»ê Áõ°¡
      • ºñ¿ë È¿À²ÀûÀÌ°í ¾ÈÀüÇÑ ±³À° ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
      • ³×Æ®¿öÅ© Áß½ÉÀÇ ÀüÀï ±³¸®ÀÇ Ã¤¿ë
      • ¹«ÀÎ ½Ã½ºÅÛ(UAV, UGV, USV)ÀÇ ÈÆ·Ã¿¡ ´ëÇÑ ÁÖ¸ñÀÇ °íÁ¶
      • VR/AR°ú AIÀÇ ±â¼ú Áøº¸
    • ¾÷°èÀÇ ÀáÀçÀû ¸®½ºÅ© ¹× °úÁ¦
      • ³ôÀº Ãʱâ ÅõÀÚ ºñ¿ë
      • ·¹°Å½Ã ½Ã½ºÅÛ°úÀÇ º¹ÀâÇÑ ÅëÇÕ
  • ¼ºÀå °¡´É¼º ºÐ¼®
  • ±ÔÁ¦ »óȲ
  • ±â¼úÀÇ »óȲ
  • Àå·¡ ½ÃÀå µ¿Çâ
  • °¸ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦4Àå °æÀï ±¸µµ

  • ¼­¹®
  • ±â¾÷ÀÇ ½ÃÀå Á¡À¯À² ºÐ¼®
  • ÁÖ¿ä ½ÃÀå ±â¾÷ÀÇ °æÀï ºÐ¼®
  • °æÀï Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º
  • Àü·« ´ë½Ãº¸µå

Á¦5Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : À¯Çüº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • ¶óÀ̺ê
  • °¡»ó
  • °Ç¼³Àû

Á¦6Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : Ç÷§Æûº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • À°±º
  • ÇØ±º
  • °ø±º

Á¦7Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : ¼Ö·ç¼Çº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • Á¦Ç°
  • ¼­ºñ½º

Á¦8Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : ½Ã¹Ä·¹ÀÌ¼Ç À¯Çüº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • ºñÇà ½Ã¹Ä·¹ÀÌÅÍ
  • Â÷·® ½Ã¹Ä·¹ÀÌÅÍ
  • ÀüÅõ ½Ã¹Ä·¹ÀÌ¼Ç ½Ã½ºÅÛ
  • Ä¿¸Çµå ÄÁÆ®·Ñ ½Ã¹Ä·¹ÀÌÅÍ
  • ±âŸ

Á¦9Àå ½ÃÀå Ãß°è ¹× ¿¹Ãø : Áö¿ªº°(2021-2034³â)

  • ÁÖ¿ä µ¿Çâ
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ÀÌÅ»¸®¾Æ
    • ³×´ú¶õµå
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • È£ÁÖ
    • Çѱ¹
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ¾Æ¸£ÇîÆ¼³ª
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ³²¾ÆÇÁ¸®Ä«
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)

Á¦10Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

  • BAE Systems
  • Bohemia Interactive Simulations
  • CAE
  • Collins Aerospace
  • Cubic Corporation
  • Elbit Systems
  • Indra Sistemas
  • Kongsberg Maritime
  • L3Harris Technologies
  • Leonardo DRS
  • Lockheed Martin
  • Northrop Grumman
  • Rheinmetall
  • Saab
  • ST Engineering
  • Textron Systems
  • Thales
  • The Boeing Company
AJY

The Global Military Simulation and Training Market was valued at USD 13.7 billion in 2024 and is estimated to grow at a CAGR of 5.3% to reach USD 22.8 billion by 2034, driven by the rise in defense spending globally, which continues to drive the need for advanced, safe, and cost-efficient training systems. As defense forces seek realistic yet economical solutions, demand for high-tech simulation tools has surged. While live combat drills remain crucial, simulation platforms help reduce operational risks and minimize costs associated with real-life training, such as equipment wear and fuel consumption.

Military Simulation and Training Market - IMG1

However, past trade tensions, especially tariffs on Chinese electronics, disrupted the supply chain and increased production costs for US defense contractors. Technological advancements like artificial intelligence (AI), digital twins, and immersive AR/VR transform the military simulation and training landscape. These innovations enable defense forces to simulate highly complex, multi-domain scenarios with unparalleled realism and efficiency. AI-driven training systems can now adapt to user behavior, deliver personalized learning paths, and predict outcomes based on real-time decision-making patterns. Digital twins-virtual replicas of physical systems-allow defense personnel to interact with real-time data from equipment, vehicles, or entire environments, facilitating better strategic planning and operational accuracy.

Market Scope
Start Year2024
Forecast Year2025-2034
Start Value$13.7 Billion
Forecast Value$22.8 Billion
CAGR5.3%

In terms of simulation type, the live training segment in the military simulation and training market generated USD 6.61 billion in 2024. Although virtual and constructive simulations are advancing, live exercises remain unmatched in delivering authentic combat experiences and are crucial for replicating dynamic battle scenarios. The growing emphasis on joint training missions has also elevated the need for large-scale live simulations, which are becoming more effective with innovations in laser-based weapon substitutes and hybrid systems.

The airborne simulation segment in the military simulation and training market was valued at USD 5.63 billion in 2024, driven by the rising adoption of next-generation aircraft and UAVs has pushed demand for highly specialized simulators designed for complex mission planning, avionics training, and advanced piloting. With flight operations becoming more expensive, simulation-based training offers a cost-effective and efficient alternative, reducing the number of real flying hours needed for skill development, particularly for high-maintenance aircraft.

United States Military Simulation and Training Market generated USD 4.3 billion in 2024, driven by substantial increases in defense spending, coupled with a focused commitment to modernizing training infrastructure. The country is developing next-gen simulation environments integrating digital twin technologies, enabling real-time mirroring of battlefield conditions for more accurate and data-rich preparation. Moreover, initiatives centered on synthetic environments and cloud-based training ecosystems are gaining widespread adoption, ensuring forces to operate cohesively across domains and in complex joint-force scenarios.

To maintain a strong position in the competitive landscape, key companies like Lockheed Martin, Northrop Grumman, BAE Systems, CAE, Collins Aerospace, Saab, Thales, Elbit Systems, Boeing, Rheinmetall, L3Harris Technologies, ST Engineering, Kongsberg Maritime, Indra Sistemas, Leonardo DRS, Cubic Corporation, Textron Systems, and Bohemia Interactive Simulations are focusing on several core strategies. These include partnerships with defense departments, expansion into emerging markets, and investments in R&D for AR, AI, and VR capabilities. Many are upgrading existing simulators to incorporate real-time data and cross-domain training tools, while others are integrating cloud-based platforms for remote training.

Table of Contents

Chapter 1 Methodology and Scope

  • 1.1 Market scope and definitions
  • 1.2 Research design
    • 1.2.1 Research approach
    • 1.2.2 Data collection methods
  • 1.3 Base estimates and calculations
    • 1.3.1 Base year calculation
    • 1.3.2 Key trends for market estimation
  • 1.4 Forecast model
  • 1.5 Primary research and validation
    • 1.5.1 Primary sources
    • 1.5.2 Data mining sources

Chapter 2 Executive Summary

  • 2.1 Industry 360° synopsis

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Trump Administration Tariffs
    • 3.2.1 Impact on Trade
      • 3.2.1.1 Trade Volume Disruptions
      • 3.2.1.2 Retaliatory Measures
    • 3.2.2 Impact on the Industry
      • 3.2.2.1 Supply-Side Impact
        • 3.2.2.1.1 Price Volatility in Key Components
        • 3.2.2.1.2 Supply Chain Restructuring
        • 3.2.2.1.3 Production Cost Implications
      • 3.2.2.2 Demand-Side Impact (Selling Price)
        • 3.2.2.2.1 Price Transmission to End Markets
        • 3.2.2.2.2 Market Share Dynamics
        • 3.2.2.2.3 Consumer Response Patterns
    • 3.2.3 Key Companies Impacted
    • 3.2.4 Strategic Industry Responses
      • 3.2.4.1 Supply Chain Reconfiguration
      • 3.2.4.2 Pricing and Product Strategies
      • 3.2.4.3 Policy Engagement
    • 3.2.5 Outlook and Future Considerations
  • 3.3 Industry impact forces
    • 3.3.1 Growth drivers
      • 3.3.1.1 Increased defense budgets worldwide
      • 3.3.1.2 Rising demand for cost-effective and safe training solutions
      • 3.3.1.3 Adoption of network-centric warfare doctrines
      • 3.3.1.4 Growing focus on unmanned systems training (UAVs, UGVs, USVs)
      • 3.3.1.5 Technological advancements in VR/AR and AI
    • 3.3.2 Industry pitfalls and challenges
      • 3.3.2.1 High initial investment costs
      • 3.3.2.2 Complex integration with legacy systems
  • 3.4 Growth potential analysis
  • 3.5 Regulatory landscape
  • 3.6 Technology landscape
  • 3.7 Future market trends
  • 3.8 Gap analysis
  • 3.9 Porter's analysis
  • 3.10 PESTEL analysis

Chapter 4 Competitive Landscape, 2024

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive analysis of major market players
  • 4.4 Competitive positioning matrix
  • 4.5 Strategy dashboard

Chapter 5 Market Estimates and Forecast, By Type, 2021 – 2034 (USD Million)

  • 5.1 Key trends
  • 5.2 Live
  • 5.3 Virtual
  • 5.4 Constructive

Chapter 6 Market Estimates and Forecast, By Platform, 2021 – 2034 (USD Million)

  • 6.1 Key trends
  • 6.2 Land
  • 6.3 Maritime
  • 6.4 Airborne

Chapter 7 Market Estimates and Forecast, By Solution, 2021 – 2034 (USD Million)

  • 7.1 Key trends
  • 7.2 Product
  • 7.3 Services

Chapter 8 Market Estimates and Forecast, By Simulation Type, 2021 – 2034 (USD Million)

  • 8.1 Key trends
  • 8.2 Flight simulators
  • 8.3 Vehicle simulators
  • 8.4 Combat simulation systems
  • 8.5 Command & control simulators
  • 8.6 Others

Chapter 9 Market Estimates and Forecast, By Region, 2021 – 2034 (USD Million)

  • 9.1 Key trends
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 France
    • 9.3.4 Spain
    • 9.3.5 Italy
    • 9.3.6 Netherlands
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 India
    • 9.4.3 Japan
    • 9.4.4 Australia
    • 9.4.5 South Korea
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Mexico
    • 9.5.3 Argentina
  • 9.6 Middle East and Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 South Africa
    • 9.6.3 UAE

Chapter 10 Company Profiles

  • 10.1 BAE Systems
  • 10.2 Bohemia Interactive Simulations
  • 10.3 CAE
  • 10.4 Collins Aerospace
  • 10.5 Cubic Corporation
  • 10.6 Elbit Systems
  • 10.7 Indra Sistemas
  • 10.8 Kongsberg Maritime
  • 10.9 L3Harris Technologies
  • 10.10 Leonardo DRS
  • 10.11 Lockheed Martin
  • 10.12 Northrop Grumman
  • 10.13 Rheinmetall
  • 10.14 Saab
  • 10.15 ST Engineering
  • 10.16 Textron Systems
  • 10.17 Thales
  • 10.18 The Boeing Company
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦