½ÃÀ庸°í¼­
»óǰÄÚµå
1750756

ÀÚµ¿Â÷ ģȯ°æ ÀÚÀç : Àü·«Àû ºÐ¼®

Green Materials in Cars: A Strategic Analysis

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Frost & Sullivan | ÆäÀÌÁö Á¤º¸: ¿µ¹® 65 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Á¤ºÎ ±ÔÁ¦¿Í ȯ°æ¿¡ ´ëÇÑ ¿ì·Á°¡ ģȯ°æ ÀÚÀçÀÇ ÇâÈÄ ¼ºÀå ÀáÀç·ÂÀ» ³ôÀÔ´Ï´Ù.

ÀÚµ¿Â÷»ê¾÷Àº ȯ°æ±ÔÁ¦, ¼ÒºñÀÚ ¼ö¿ä, ±âÁ¸ ÀÚÀç°¡ ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ÀǽÄÀÌ ³ô¾ÆÁö¸é¼­ Áö¼Ó°¡´É¼ºÀ¸·Î Å©°Ô º¯È­Çϰí ÀÖ½À´Ï´Ù. ģȯ°æ ÀÚÀç ä¿ëÀÇ Àü·«Àû Àǹ̸¦ ÆÄÇìÃÄ, ±× ȯ°æ ¿µÇ⠻谨 È¿°ú¸¦ ºÐ¼®ÇßÀ¸¸ç, OEMÀÇ ¾îÇÁ·ÎÄ¡¸¦ ºñ±³Çϰí ÀÖ½À´Ï´Ù. ¶Ç, ±ÔÁ¦ »óȲ°ú ÇâÈÄÀÇ µ¿Çâ¿¡ ´ëÇØ¼­µµ Á¶»çÇßÀ¸¸ç, ÇâÈÄÀÇ Áö¼Ó °¡´ÉÇÑ Àç·á ä¿ëÀÇ ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

ö°­, ¾Ë·ç¹Ì´½, È­¼® ¿¬·á À¯·¡ÀÇ ÇÃ¶ó½ºÆ½°ú °°Àº ±âÁ¸ÀÇ ÀÚµ¿Â÷ Àç·á´Â ȯ°æ¸é¿¡¼­ Å« °úÁ¦¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù.

1. ³ôÀº ź¼Ò ¹ßÀÚ±¹ : ¹°ÀÚÀÇ ÃßÃâ, °¡°ø ¹× Á¦Á¶´Â ¿Â½Ç °¡½º ¹èÃâ¿¡ Å©°Ô ±â¿©ÇÕ´Ï´Ù.

2. ÀÚ¿ø °í°¥ : È­¼® ¿¬·á ¹× ±Ý¼Ó ±¤¼®°ú °°Àº À¯ÇÑ ÀÚ¿ø¿¡ ´ëÇÑ ÀÇÁ¸Àº ÀÚ¿ø °í°¥°ú °ø±Þ¸Á Ãë¾à¼º¿¡ ´ëÇÑ ¿ì·Á¸¦ ÃÊ·¡ÇÕ´Ï´Ù.

3. ¿À¿° ¹× Æó±â¹° : Á¦Á¶ °øÁ¤ ¹× »ç¿ëµÈ Á¦Ç°ÀÇ Æó±â´Â °øÇظ¦ ÀÏÀ¸ÄÑ ¸Å¸³ Æó±â¹°ÀÇ ¿øÀÎÀÌ µË´Ï´Ù.

±âÁ¸ÀÇ ÀÚÀ縦 ´ëüÇÏ´Â °ÍÀ¸·Î, OEMÀº Àç»ý ÇÃ¶ó½ºÆ½, Àç»ý ÇÃ¶ó½ºÆ½ º´, Àç»ý ±Ý¼Ó, õ¿¬¼¶À¯, ½Ä¹° À¯·¡ º¹ÇÕÀç·á, ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½, ½Ä¹°°ú ¼ö¸ñ, ¼ÒºñÀڷκÎÅÍ ³ª¿À´Â À¯±â Æó±â¹° µî, ȯ°æ¿¡ ¹è·ÁÇÑ Áö¼Ó °¡´ÉÇÑ ÀÚÀ縦, °æ·®À¸·Î Áö¼Ó °¡´ÉÇÑ ÀÌÁ¡À» Á¦°øÇϱâ À§ÇØ, ÀÚµ¿Â÷ ³»ÀÇ ´Ù¾çÇÑ ¿ëµµ·Î »ç¿ëÇÏ·Á´Â ½Ãµµ°¡ ´Ã°í ÀÖ½À´Ï´Ù. ÀçȰ¿ë ÇÃ¶ó½ºÆ½°ú ±Ý¼ÓÀº ÀÚµ¿Â÷ »ê¾÷¿¡¼­ °¡Àå ¸¹ÀÌ Ã¤¿ëµÇ°í ÀÖ½À´Ï´Ù.

±×·¯³ª ÀÌ·¯ÇÑ Àç·á¸¦ ÀÚµ¿Â÷¿¡ º»°ÝÀûÀ¸·Î µµÀÔÇÏ´Â µ¥´Â ¾î·Á¿òÀÌ ³²¾Æ ÀÖ½À´Ï´Ù. ³ì»öÀ¸·Î ȯ°æÀûÀ¸·Î Áö¼Ó°¡´ÉÇÑ ÀÚÀ縦 µµÀÔÇϱâ À§Çؼ­´Â ¸·´ëÇÑ ÅõÀÚ°¡ ÇÊ¿äÇϸç, ƯÈ÷ Áß¼Ò±Ô¸ð ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿¡´Â ºÎ´ãÀÌ Å®´Ï´Ù. ȸ¼ö¡¤¸®»çÀÌŬ ÇÁ·Î¼¼½º´Â 1Â÷ ¿ø·á °¡°Ý¿¡ ´ëÇ×ÇÒ ¼ö ÀÖ´Â ºñ¿ëÀ¸·Î °íǰÁúÀÇ ¸®»çÀÌŬ Á¦Ç°À» ¾ò±â¿¡ ÃæºÐÇÑ ¼³µæ·ÂÀÌ ¾ø½À´Ï´Ù. ¹ÙÀÌ¿À Àç·á´Â ȯ°æ ģȭÀûÀÌÁö¸¸ ºñÈ¿À²Àû ÀÎ Á¶´Þ ¹æ¹ý(¿¹ : ³ª¹« ¹úä), Àç·á¿¡ µû¶ó »ýºÐÇØ °¡´É¼ºÀÌ ³·°í »ý»ê ºñ¿ëÀÌ ³ô±â ¶§¹®¿¡ ¿ÏÀüÈ÷ Áö¼Ó °¡´ÉÇÏ´Ù°í´Â ÇÒ ¼ö ¾ø½À´Ï´Ù.

º¸°í¼­ÀÇ ±âÁØ ¿¬µµ´Â 2024³âÀÔ´Ï´Ù. °¢ ÀÚÀ縦 Á¾ÇÕÀûÀ¸·Î ºÐ¼®Çϰí ÀÚµ¿Â÷ ¿¡ÄڽýºÅÛÀÇ ´Ù¾çÇÑ ÀÌ´Ï¼ÅÆ¼ºê¿¡ ´ëÇØ ³íÀÇÇϰí ÀÚÀçÀÇ Áö¼Ó°¡´É¼º °¡´É¼º, µ¿Ç⠺м®, Àü·«Àû °³¹ßÀ» °­Á¶ÇÔÀ¸·Î½á ¾÷°è µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÀÌÇØÇϰí ÀÖ½À´Ï´Ù.

ÀÚµ¿Â÷ »ý»ê »ê¾÷¿¡ ´ëÇÑ Àü·«Àû °úÁ¦ Åé 3ÀÇ ¿µÇâ

ÁöÁ¤ÇÐÀû È¥¶õ

¿Ö?

  • ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦·Î OEMÀº ÀÚµ¿Â÷¿¡ ÀçȰ¿ë ÀÚÀç¿Í ģȯ°æ ÀÚÀ縦 µµÀÔÇϰí ÀÚµ¿Â÷ ¶óÀÌÇÁ »çÀÌŬ Àü¹Ý¿¡ °ÉÃÄ ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀÏ Çʿ伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù.
  • ¿¹¸¦ µé¾î, EU À§¿øÈ¸´Â 2030³â±îÁö ÀÚµ¿Â÷¿¡ 25%ÀÇ Àç»ý ÇÃ¶ó½ºÆ½À» »ç¿ëÇÒ °èȹÀ¸·Î, ±× Áß 4ºÐÀÇ 1Àº OEM¿¡ »ç¿ëµÈ ÀÚµ¿Â÷(ELV)¿¡¼­ »ç¿ëÇÒ °ÍÀ» Àǹ«È­ÇÒ ¿¹Á¤ÀÔ´Ï´Ù.

ÇÁ·Î½ºÆ® °üÁ¡

  • ÇâÈÄ 3-5³â ¾È¿¡ ÁÖ¿ä OEMÀº Æó¼â ·çÇÁ ÇÁ·Î¼¼½º¸¦ µµÀÔÇÏ¿© ÀçȰ¿ë Àç·á¸¦ ÀÚµ¿Â÷¿¡ ÅëÇÕÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. À̴ ó³à Àç·áÀÇ Á¶´Þ°ú »ý»ê¿¡ ºñÇØ »ý»ê ºñ¿ëÀ» ÁÙÀÏ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù.
  • EV ÆÇ¸ÅÀÇ °¨¼ÓÀ̳ª º¸Á¶±Ý Áß´Ü µîÀÇ °æÁ¦Àû ¿ªÇ³Àº ÀåÁ¡ÀÌ Àνĵǰí ÀÖÀ½¿¡µµ ºÒ±¸Çϰí OEM¿¡ ÀÇÇÑ Áö¼Ó °¡´ÉÇÑ ½ÇõÀ» ¼¼°èÀûÀ¸·Î °¨¼Ó½ÃŰ´Â ¿øÀÎÀÌ µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

»ç³» °úÁ¦

¿Ö?

  • ź¼Ò Á߸³¿¡ ´ëÇÑ Çå½ÅÀº OEM Á¦Á¶ °øÀå¿¡¼­ Áö¼Ó °¡´ÉÇÑ ³ì»ö ½ÇõÀÇ ÅëÇÕÀ» ÃßÁøÇÕ´Ï´Ù.
  • ģȯ°æ ÀÚÀç´Â ÇÕ¼º ÀÚÀ縦 ´ëüÇϴ ģȯ°æ ÀÚÀçÀÌÁö¸¸ OEMÀº Á¶´ÞºÎÅÍ Á¦Á¶ °øÁ¤, º¹ÀâÇÑ Â÷·®À¸·ÎÀÇ ÅëÇÕ¿¡ À̸£±â±îÁö ¿©·¯ °úÁ¦¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù.

ÇÁ·Î½ºÆ® °üÁ¡

  • õ¿¬ ½Ä¹° ¼¶À¯¿Í ¹ÙÀÌ¿À º£À̽º Æú¸®¸ÓÀÇ Ã¤¿ëÀº Á¶´Þ, °ø±Þ üÀΡ¤·ÎÁö½ºÆ½½º, °¡°øÀÇ º¹À⼺¿¡ °ü·ÃÇÏ´Â ÄÚ½ºÆ® À庮¿¡ ÀÇÇØ ÇâÈÄ ¼ö³â°£Àº ¹æÇØµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
  • ÇâÈÄ 3-5³âÀ¸·Î OEMÀº ÇÃ¶ó½ºÆ½, ö°­, ¾Ë·ç¹Ì´½ µîÀÇ Àç»ý Àç·á¸¦ ¹öÁø Àç·á¿¡ ºñÇØ ºñ¿ë È¿°ú°¡ ³ô±â ¶§¹®¿¡ Á¡Á¡ ¼±È£ÇÏ°Ô µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ÆÄ±«ÀûÀÎ ±â¼ú

¿Ö?

  • ¿­ºÐÇØ¿Í °°Àº È­ÇÐ ÀçȰ¿ë °øÁ¤Àº ±âÁ¸ ÇÃ¶ó½ºÆ½°ú ¼ÒºñÀÚ Æó±â¹°¿¡¼­ ÇÃ¶ó½ºÆ½À» ÀçȰ¿ëÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù.
  • ºí·ÏüÀÎÀ̳ª ÀΰøÁö´É(AI)°ú °°Àº µðÁöÅÐ ÅøÀº Áö¼Ó°¡´ÉÇϰí À±¸®ÀûÀÎ Á¶´ÞÀ» À§ÇØ ¿øÀç·áÀÇ ¿ø»êÁö¸¦ ÃßÀûÇÔÀ¸·Î½á °ø±ÞüÀÎÀÇ Åõ¸í¼ºÀ» ³ôÀÔ´Ï´Ù.

ÇÁ·Î½ºÆ® °üÁ¡

  • ź¼Ò ¹ßÀÚ±¹¸¦ »è°¨ÇØ, ÀÚµ¿Â÷ ¾÷°è¸¦ Áö¼Ó °¡´ÉÇÑ Á¦Á¶ ¼ö¹ýÀÇ ¸®´õ·Î¼­ ÀÚ¸®¸Å±èÇÏ´Â ³ë·ÂÀº µðÁöÅÐ ¼Ö·ç¼Ç(ºí·Ï üÀÎ, µðÁöÅÐ Æ®À©, »ý¼ºÇü AI µî)ÀÇ º»°ÝÀûÀΠä¿ë¿¡ ´Þ·Á ÀÖ½À´Ï´Ù.

ºÐ¼® ¹üÀ§

  • º» Á¶»ç¿¡¼­´Â ÀÚµ¿Â÷¿¡ À־ÀÇ ´Ù¾çÇÑ À¯ÇüÀÇ Ä£È¯°æ ÀÚÀçÀÇ Ã¤¿ë¿¡ ´ëÇØ¼­ ºÐ¼®ÇßÀ¸¸ç, ¾÷°èÀÇ OEM°¡ ä¿ëÇϰí ÀÖ´Â ´Ù¾çÇÑ ´ëó¿¡ ´ëÇØ¼­ ÇÏÀ̶óÀÌÆ®¸¦ Á¦°øÇÕ´Ï´Ù.
  • OEMÀº ´Ù¾çÇÑ ±ÔÁ¦ ´ç±¹ÀÌ Á¤Çϴ Żź¼ÒÈ­ ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§Çؼ­ ¶Ç °ø±Þ üÀÎÀ» Áö¼Ó°¡´ÉÇÏ°Ô Çϰí Àå±âÀûÀ¸·Î ºñ¿ë È¿À²ÀûÀÎ Á¦Á¶ ¹æ¹ýÀ» ½ÇÇöÇϱâ À§ÇØ ÀÚµ¿Â÷ ¸ðµ¨¿¡ ȯ°æÀûÀ¸·Î Áö¼Ó °¡´ÉÇÑ ÀÚÀ縦 Àû±ØÀûÀ¸·Î ä¿ëÇϰí ÀÖ½À´Ï´Ù.
  • ģȯ°æ ÀÚÀ縦 ÀÚµ¿Â÷¿¡ ä¿ëÇÔÀ¸·Î½á, ¿Â½Ç°¡½ºÀÇ ¹èÃâ·®À» »è°¨ÇØ, ¸Å¸³Áö³ª ÇØ¾ç¿¡ÀÇ ºÎ´ã, ELVÀÇ ½ºÅ©·¦ ¼Ò°¢¿¡ ÀÇÇÑ ´ë±â ¿À¿°À» °æ°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • º» Á¶»ç¿¡¼­´Â ÀÚµ¿Â÷ ¿¡ÄڽýºÅÛÀÇ ´Ù¾çÇÑ È¯°æ ģȭÀûÀÎ ´ëó¸¦ Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇϰí, ´Ù¾çÇÑ Àç·áÀÇ Áö¼Ó°¡´É¼ºÀÇ °¡´É¼ºÀ» ¹àÈ÷°í, Àü·«Àû °³¹ß¿¡ ´ëÇØ ³íÀÇÇÔÀ¸·Î½á, ¾÷°èÀÇ ±ËÀûÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇϰí ÀÖ½À´Ï´Ù.
  • º» Á¶»çÀÇ Áö¸®Àû ¹üÀ§´Â ¼¼°èÀ̸ç, ģȯ°æ ÀÚÀçÀÇ Â÷Àç ¿ëµµ¸¸À» ºÐ¼®Çß½À´Ï´Ù.

¼ºÀåÀÇ ¿øµ¿·Â

  • ±ÔÁ¦ÀÇ ¿µÇâ : ¸¹Àº ±¹°¡(ƯÈ÷ EU, Àεµ µî)°¡ ¾ö°ÝÇÑ ÆóÂ÷¡¤¸®»çÀÌŬ ±ÔÁ¦¿Í °­·ÂÇÑ È®´ë »ý»êÀÚ Ã¥ÀÓ(EPR)ÀÇ Æ²À» ½Ç½ÃÇß½À´Ï´Ù.±× °á°ú, ÀÚµ¿Â÷ ¾÷°è¿¡¼­´Â ÆóÂ÷ Àç·áÀÇ È¸¼öÀ²ÀÇ Çâ»ó, ¸®»çÀÌŬ Ȱµ¿ÀÇ È°¼ºÈ­, È¿À²ÀûÀÎ Â÷·® Æó±â ÇÁ·ÎÁ§Æ®°¡ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù.
  • ¾ÈÁ¤ÀûÀÎ °ø±Þ¸Á À¯Áö : OEM °¢ ȸ»ç´Â °ø±Þ¸ÁÀ» ¾ÈÁ¤½Ã۰í Áß´ÜÇÏÁö ¾Êµµ·Ï ÇÏ°í ¹öÁø Àç·á¿¡ ´ëÇÑ ÀÇÁ¸¼ºÀ» ÁÙÀÌ´Â ÇÑÆí, ÀçȰ¿ë Àç·á¿Í ȯ°æ ģȭÀûÀÎ Àç·á¸¦ ´õ ¸¹ÀÌ ÀÚµ¿Â÷¿¡ »ç¿ëÇÏ´Â °ÍÀ» Á¡Á¡ °ËÅäÇÏ°Ô µÇ°í ÀÖ½À´Ï´Ù.
  • Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ÀǽÄÀÌ ³ô¾ÆÁü : ÀÚµ¿Â÷ »ý»ê °øÁ¤¿¡¼­ Áö¼Ó°¡´É¼ºÀÇ ½ÇÇöÀÌ Áß½ÃµÇ°Ô µÇ¾î ÀÖ½À´Ï´Ù.
  • EV¿ë ¹èÅ͸®ÀÇ »ý»ê ±Ô¸ð È®´ë : ¼¼°èÀÇ EV ¼ö¿ä¿¡ ´ëÀÀÇϱâ À§Çؼ­´Â ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼¼°èÀÇ ¿ä±¸¸¦ ÃæÁ·½Ã۱â À§ÇØ ¹èÅ͸® »ý»êÀ» ±Þ¼ÓÈ÷ È®´ëÇÒ Çʿ䰡 ÀÖ½À´Ï´Ù.

ÁÖ¿ä °æÀï¾÷ü

  • Stellantis
  • Volkswagen
  • Ford Motors
  • General Motors
  • Volvo
  • BMW
  • Mercedes-Benz
  • Porsche
  • Renault
  • Kia Motors
  • Nissan
  • Mitsubishi
  • Maserati
  • Fisker Ocean
  • Knauf Industries
  • ECONYL
  • Covestro
  • LyondellBasell
  • Rever Corporation
  • Bcomp
  • Green Dot Bioplastics
  • NatureWorks
  • Cruz Foam
  • Redwood Materials
  • Li-Cycle
  • Glencore International
  • Primobius
  • Retriev Technologies
  • Umicore
  • Ascend Elements
  • RecycliCo Battery Materials
  • ³ëº§¸®½º
  • Schnitzer Steel
  • Constellium
  • Aurubis
  • Nth Cycle
  • Hydro
  • UBQ Materials
  • Genecis Bioindustries
  • Continental
  • Toyoda Gosei Co. Ltd.

¼ºÀå ¾ïÁ¦¿äÀÎ

  • ³ôÀº µµÀÔ ºñ¿ë : Àç·á »ç¿ë°ú ¿¡³ÊÁö »ý¼º µîÀÇ ºÐ¾ß¿¡¼­ ³ì»öÀ¸·Î ȯ°æÀûÀ¸·Î Áö¼Ó °¡´ÉÇÑ Àç·á¸¦ µµÀÔÇÏ·Á¸é ¸·´ëÇÑ ÅõÀÚ°¡ ÇÊ¿äÇϸç, ÀÚµ¿Â÷ OEM, ƯÈ÷ Áß¼Ò±Ô¸ð ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿¡ ºÎ´ãÀÌ µì´Ï´Ù.
  • º¹ÀâÇÑ °¡°ø ¿ä°Ç : ÀçȰ¿ë ÀÚÀç´Â ÃÖÀûÀÇ Ç°Áú ±âÁØÀ» ÃæÁ·½Ã۱â À§ÇØ °¡°ø¡¤Á¤Á¦µÇ¾î¾ß ÇÕ´Ï´Ù.
  • ģȯ°æ ÀÚÀçÀÇ ¾ÈÁ¤ °ø±Þ ºÎÁ· : ³ì»ö ÀÚÀç°ø±Þ¸ÁÀº ¹Ì¼º¼÷À̸ç OEMÀÌ ÀÚµ¿Â÷ »ý»ê¿¡ ÇÊ¿äÇÑ(ÇÃ¶ó½ºÆ½ Æó±â¹° ¹× õ¿¬¼¶À¯ ÀÚÀç µî) ¾ÈÁ¤ °ø±ÞÀ» ¿©·¯ °ø±Þ¿øÀ¸·ÎºÎÅÍ ÀϰüµÇ°Ô ¹Þ´Â °ÍÀº ¾î·Æ°í, Á¶´Þ ºñ¿ëÀÇ »ó½ÂÀ¸·Î À̾îÁú °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù.
  • °í±ÞÂ÷ ¿À³Ê¿¡ ÇÑÁ¤µË´Ï´Ù.ÇÃ¶ó½ºÆ½À̳ª °¡Á×ÀÇ ´ëüǰÀ¸·Î¼­ ÀÚ¸®¸Å±èµÇ´Â ȯ°æ ģȭÀûÀÎ ÀÚÀç Áß¿¡´Â ±âÁ¸ÀÇ ÀÚÀç¿¡ ºñÇØ Àû¾îµµ 20% ÀÌ»ó °í°¡ÀÇ °ÍÀÌ ÀÖ¾î, ´ëÁßÂ÷¿¡ÀÇ Ã¤¿ëÀÌ ´Ê½À´Ï´Ù.

¸ñÂ÷

¼ºÀå ¿äÀÎ

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ÀÚµ¿Â÷ »ê¾÷¿¡ À־ ÀüÅëÀû ÀÚÀçÀÇ °úÁ¦
  • ÀÚµ¿Â÷ ģȯ°æ ÀÚÀç¿Í ¼­½ºÅ×À̳ʺí ÀÚÀçÀÇ °³¿ä
  • ÀÚµ¿Â÷ ģȯ°æ ÀÚÀçÀÇ ÁÖ¿ä Ä«Å×°í¸®

¼ºÀåȯ°æ

  • ÁÖ¿ä ¿äÁ¡
  • ÀÚµ¿Â÷ »ê¾÷¿¡ À־ ģȯ°æ ÀÚÀçÀÇ ÁøÈ­
  • ÀÚµ¿Â÷¿¡ »ç¿ëµÇ´Â ģȯ°æ ÀÚÀçÀÇ ºÐ¼®
  • ÀÚµ¿Â÷ »ê¾÷¿¡ À־ ģȯ°æ ÀÚÀçÀÇ Ã¤¿ë¿¡ ¿µÇâÀ» ÁÖ´Â ±ÔÁ¦
  • ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿¡ ÀÇÇÑ Ä£È¯°æ ÀÚÀçÀÇ ¼±ÅÃÀû µµÀÔ
  • ÀÚµ¿Â÷¿¡ À־ ģȯ°æ ÀÚÀçÀÇ ÇâÈÄ ¼ºÀå °¡´É¼º
  • OEM ºñ±³ ºÐ¼® : ģȯ°æ ÀÚÀç ä¿ë

ÀÚµ¿Â÷ÀÇ ÀçȰ¿ë Àç·á ÇÃ¶ó½ºÆ½, °í¹«, ±Ý¼Ó

  • ÀÚµ¿Â÷ÀÇ ÀçȰ¿ë ÀÚÀçÀÇ ÁÖ¿ä Ä«Å×°í¸®
  • ÀÚµ¿Â÷ÀÇ ÀçȰ¿ë : °³¿ä
  • ÀÚµ¿Â÷¿¡¼­ Àç»ý ÇÃ¶ó½ºÆ½ »ç¿ë : ÇÏÀ̶óÀÌÆ®
  • ÀÚµ¿Â÷¿¡ »ç¿ëµÇ´Â ÁÖ¿ä ÇÃ¶ó½ºÆ½ÀÇ °³¿ä
  • ÀÚµ¿Â÷¿¡¼­ÀÇ Àç»ý ÇÃ¶ó½ºÆ½ÀÇ »ç¿ë ºÐ¼®
  • ÀÚµ¿Â÷¿¡¼­ÀÇ Àç»ý ÇÃ¶ó½ºÆ½ÀÇ ¿ëµµ
  • Àç»ý ÇÃ¶ó½ºÆ½À¸·Î ¸¸µé¾îÁø ģȯ°æ Á÷¹° ¾÷°èÀÇ ³ë·Â
  • ÀÚµ¿Â÷ »ê¾÷¿¡¼­ÀÇ ÇÃ¶ó½ºÆ½ ÀçȰ¿ëÀÇ °úÁ¦
  • ÁÖ¿ä OEM¿¡ ÀÇÇÑ Àç»ý ÇÃ¶ó½ºÆ½ÀÇ ÀÌ¿ë°ú Àå·¡ ºñÀü
  • ÄÉÀ̽º ½ºÅ͵𠽺Å×¶õƼ½º»ç¿¡ ÀÇÇÑ Àç»ý ÇÃ¶ó½ºÆ½ÀÇ ÀÌ¿ë
  • ÀÚµ¿Â÷¿¡¼­ Àç»ý °í¹«ÀÇ »ç¿ë : ÇÏÀ̶óÀÌÆ®
  • ÀÚµ¿Â÷¿¡¼­ÀÇ Àç»ý °í¹«ÀÇ »ç¿ë
  • »ç·Ê ¿¬±¸ ÄÜÆ¼³ÙÅ» ÀçȰ¿ë ŸÀ̾î
  • ÀÚµ¿Â÷¿¡¼­ ÀçȰ¿ë ±Ý¼Ó »ç¿ë : ÇÏÀ̶óÀÌÆ®
  • ÀÚµ¿Â÷¿¡ »ç¿ëµÇ´Â ÁÖ¿ä ±Ý¼ÓÀÇ °³¿ä
  • ÀÚµ¿Â÷ »ê¾÷¿¡¼­ÀÇ ±Ý¼Ó ÀçȰ¿ëÀÇ ÀǹÌ
  • ÀçȰ¿ë ±Ý¼Ó OEM¿¡ ÀÇÇÑ Æó¼â ·çÇÁ ¾Ë·ç¹Ì´½ ÀçȰ¿ë
  • ÀÚµ¿Â÷ »ê¾÷¿¡ À־ Àç»ý ±Ý¼ÓÀÇ ´ëó
  • ÀÚµ¿Â÷ ÀçȰ¿ë ÀÚÀçÀÇ ÁÖ¿ä ±³ÈÆ

ÀÚµ¿Â÷ÀÇ ÀçȰ¿ë ¹èÅ͸®

  • ÀÚµ¿Â÷¿¡¼­ ÀçȰ¿ë ¹èÅ͸® »ç¿ë : ÇÏÀ̶óÀÌÆ®
  • EV ¹èÅ͸®ÀÇ ÀçȰ¿ëÀ¸·ÎºÎÅÍ È¸¼öµÇ´Â ÁÖ¿ä Àç·á
  • EV ¹èÅ͸®ÀÇ À¯Çü°ú ¼³ºñ °¡´É¼º
  • EV ¹èÅ͸® ÀçȰ¿ë ½ÃÀå Àü¸Á ÇÏÀ̶óÀÌÆ®
  • EV ¹èÅ͸®ÀÇ ÀçȰ¿ëÀ» °ü¸®ÇÏ´Â ÁÖ¿ä ±ÔÁ¦
  • »ç·Ê ¿¬±¸ ¸Þ¸£¼¼µ¥½º º¥Ã÷ÀÇ EV ¹èÅ͸® ÀçȰ¿ë
  • EV ¹èÅ͸®ÀÇ ÀçȰ¿ë ¾÷°èÀÇ ³ë·Â
  • ¿äÁ¡

ÀÚµ¿Â÷ÀÇ ¹ÙÀÌ¿À Àç·á

  • ÀÚµ¿Â÷ÀÇ ¹ÙÀÌ¿À Àç·áÀÇ ÁÖ¿ä Ä«Å×°í¸®
  • ÀÚµ¿Â÷»ê¾÷ÀÌ ÀÚµ¿Â÷¿¡ ¹ÙÀÌ¿ÀÀç·á¸¦ »ç¿ëÇÏ´Â ÀÌÀ¯
  • ÀÚµ¿Â÷¿¡¼­ ¹ÙÀÌ¿Àº£À̽º Æú¸®¸ÓÀÇ »ç¿ë : ÇÏÀ̶óÀÌÆ®
  • °³¿ä¿Í »ýºÐÇØ¼ºÀÇ °¡´É¼º
  • ¹ÙÀÌ¿À º£À̽º Æú¸®¸ÓÀÇ »ç¿ë OEMÀÇ ´ëó
  • ÀÚµ¿Â÷¿¡¼­ õ¿¬¼¶À¯ÀÇ »ç¿ë : ÇÏÀ̶óÀÌÆ®
  • ±âÁ¸ÀÇ ¼¶À¯¿Í õ¿¬¼¶À¯ÀÇ ºñ±³
  • °³¿ä¿Í »ýºÐÇØ¼ºÀÇ °¡´É¼º
  • õ¿¬¼¶À¯ÀÚµ¿Â÷¿¡ À־ÀÇ ÁÖ¿ä ´ëó
  • õ¿¬¼¶À¯ OEM¿¡ ÀÇÇÑ ´ëó
  • ÀÚµ¿Â÷¿¡¼­ÀÇ À¯±âÆó±â¹°ÀÇ ÀÌ¿ë : ÇÏÀ̶óÀÌÆ®
  • ÀÚµ¿Â÷ÀÇ À¯±â Æó±â¹° : ¾÷°èÀÇ ³ë·Â°ú °úÁ¦
  • »ç·Ê ¿¬±¸ ±â¾Æ ÀÚµ¿Â÷¿¡¼­ ¹ÙÀÌ¿À ÀÚÀç »ç¿ë
  • ŰÆ÷ÀÎÆ®

¼ºÀå ±âȸ

  • ¼ºÀå ±âȸ 1 : ÀçȰ¿ëÀº È¿À²ÀûÀÎ Æó±â 󸮸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù.
  • ¼ºÀå ±âȸ 2 : ÀÚµ¿Â÷ ¼³°è½Ã ģȯ°æ ÀÚÀç Àü·«À» °í·Á
  • ¼ºÀå ±âȸ 3 : EV ¼­Å§·¯ ¹× ÀÌÄÚ³ë¹Ì¿¡´Â ¹èÅ͸® Àç·áÀÇ ¸®»çÀÌŬÀÌ ºÒ°¡°á

ºÎ·Ï ¹× ´ÙÀ½ ´Ü°è

  • ¼ºÀå ±âȸÀÇ ÀåÁ¡°ú ¿µÇâ
  • ´ÙÀ½ ´Ü°è
  • º°Áö ¸®½ºÆ®
  • ¸éÃ¥»çÇ×
KTH

Government Regulations and Environmental Concerns Drive Future Growth Potential of Green and Eco-Friendly Materials

The automotive industry is undergoing a profound shift towards sustainability, driven by environmental regulations, consumer demand, and a growing awareness of the environmental impact of traditional materials. This report comprehensively analyzes green materials in the automotive sector, examining their definition, evolution, key categories, and applications. The report delves into the strategic implications of adopting green materials, analyzing their environmental impact reductions and comparing OEM approaches. The report also explores the regulatory landscape and future trends, providing a roadmap for sustainable material adoption in the future.

Traditional automotive materials, such as steel, aluminum, and plastics derived from fossil fuels, pose significant environmental challenges:

1. High Carbon Footprint: These materials' extraction, processing, and manufacturing contribute significantly to greenhouse gas emissions.

2. Resource Depletion: Reliance on finite resources like fossil fuels and metal ores raises concerns about resource depletion and supply chain vulnerability.

3. Pollution and Waste: Manufacturing processes and end-of-life disposal generate pollution and contribute to landfill waste.

As an alternative to traditional materials, OEMs are increasingly experimenting with green and sustainable materials such as recycled plastics, recycled PET bottles, recycled metals, natural fibers, plant-based composites, bioplastics, and organic wastes from plants, trees, and consumers in different automotive applications within a car to offer lightweight and sustainable benefits. Recycled plastics and metals are the most adopted in the automotive industry. It provides a compelling combination of cost-effectiveness, reduced carbon emission benefits, and circular economy advantages compared with other green materials, making it the leading choice among OEMs.

However, challenges persist with the full-scale implementation of these materials in vehicles. Implementing green and environmentally sustainable materials involves huge investments, which especially burdens small- and medium-scale automotive OEMs. Recovery and recycling processes are not compelling enough to obtain high-quality recycled products at a cost that can compete with primary raw material prices. Though bio-based materials are environmentally friendly, they are not entirely sustainable owing to inefficient sourcing methods (e.g., deforestation of trees), low biodegradability potential in some materials, and higher production costs.

The base year of the report is 2024. It comprehensively analyzes each material and discusses different initiatives in the automotive ecosystem, highlighting the sustainability potential of materials, trend analysis, and strategic developments to provide a comprehensive understanding of the industry's trajectory.

The Impact of the Top 3 Strategic Imperatives on the Automotive Production Industry

Geopolitical Chaos

Why:

  • Strict environmental regulations are increasingly forcing OEMs to implement recycled and eco-friendly materials in vehicles and reduce carbon emissions throughout the vehicle life cycle.
  • For example, by 2030, the EU Commission will require OEMs to use 25% recycled plastics in their vehicles, with a quarter of it coming from end-of-life vehicles (ELVs).

Frost Perspective:

  • In the next 3 to 5 years, major OEMs will enact closed-loop processes to incorporate recycled materials into their vehicles. This is because of the reduced production costs when compared to virgin material sourcing and production.
  • Economic headwinds, including a slowdown in EV sales and withdrawn subsidies, will contribute to the global slowdown of sustainable practices by OEMs despite the recognized benefits.

Internal Challenges

Why:

  • Carbon neutrality commitments drive the integration of sustainable and green practices at OEM manufacturing plants.
  • Though green materials are eco-friendly alternatives to synthetic counterparts, OEMs face multiple challenges, from sourcing to manufacturing processes to integrating them into the complex vehicles.

Frost Perspective:

  • The adoption of natural plant fibers and bio-based polymers will be hindered over the next few years by cost barriers associated with sourcing, supply chain logistics, and processing complexities.
  • In the next 3 to 5 years, OEMs will increasingly favor recycled materials like plastics, steel, and aluminum due to their cost-effectiveness compared to virgin materials.

Disruptive Technologies

Why:

  • Chemical recycling processes, such as pyrolysis, are used to recycle plastics from existing plastics and consumer waste.
  • Digital tools like blockchain and artificial intelligence (AI) enhance supply chain transparency by tracing raw material origins for sustainable and ethical sourcing.

Frost Perspective:

  • Efforts to both reduce carbon footprints and position the automotive industry as a leader in sustainable manufacturing practices will rely on full-scale adoption of digital solutions (such as blockchain, digital twins, and generative AI). Yet, these efforts will not be widespread until after 2030.

Scope of Analysis

  • This study analyzes the adoption of different types of green materials in cars, providing highlights on the different initiatives adopted by OEMs in the industry.
  • OEMs are actively embracing environmentally sustainable materials in their vehicle models to meet the decarbonization goals set forth by various regulators and to make their supply chain sustainable and manufacturing practices cost-effective in the long run.
  • Adopting green materials in vehicles can reduce greenhouse gas emissions and their burden on landfills, oceans, and air pollution caused by the burning of scrap from ELVs.
  • The study offers a holistic view of the different eco-friendly initiatives in the automotive ecosystem, highlights the sustainability potential of different materials, and discusses strategic developments to provide a comprehensive view of the industry's trajectory.
  • The geographical scope of this study is global and only analyzes in-vehicle applications of green materials.

Growth Drivers

  • Regulatory impact: Many countries (e.g., especially the EU, India) are enforcing strict ELV and recycling regulations and strong extended producer responsibility (EPR) frameworks. This is eventually leading to better scrap material recovery, increasing recycling initiatives, and efficient vehicle disposal projects among automakers in the industry.
  • Maintaining a stable supply chain: OEMs are increasingly looking at making their supply chain stable and uninterrupted, and reducing their dependence on virgin materials while using more recycled and eco-friendly materials in their vehicles.
  • Growing sustainability awareness: There is a growing emphasis on implementing sustainability in automotive production processes. Using recycled materials (e.g., plastics, metals) and bio-based alternatives will reduce the environmental impact of vehicle manufacturing.
  • Battery production scaling for EVs: Global EV demand requires rapid scaling of battery production to meet the global need for energy storage solutions. OEMs are initiating battery material recycling initiatives to meet the growing demand for materials such as lithium, nickel, and cobalt for new EV battery production.

Key Competitors

  • Stellantis
  • Volkswagen
  • Ford Motors
  • General Motors
  • Volvo
  • BMW
  • Mercedes-Benz
  • Porsche
  • Renault
  • Kia Motors
  • Nissan
  • Mitsubishi
  • Maserati
  • Fisker Ocean
  • Knauf Industries
  • ECONYL
  • Covestro
  • LyondellBasell
  • Rever Corporation
  • Bcomp
  • Green Dot Bioplastics
  • NatureWorks
  • Cruz Foam
  • Redwood Materials
  • Li-Cycle
  • Glencore International
  • Primobius
  • Retriev Technologies
  • Umicore
  • Ascend Elements
  • RecycliCo Battery Materials
  • Novelis
  • Schnitzer Steel
  • Constellium
  • Aurubis
  • Nth Cycle
  • Hydro
  • UBQ Materials
  • Genecis Bioindustries
  • Continental
  • Toyoda Gosei Co. Ltd.

Growth Restraints

  • High implementation costs: Implementing green and environmentally sustainable materials in areas such as material usage and energy generation involves huge investments, burdening automotive OEMs, especially small- and medium-scale automakers.
  • Complex processing requirements: Recycled materials must be processed and refined to meet the optimal quality standards. For instance, natural fibers have water-absorbing properties, leading to dimensional instability and reduced mechanical properties in humid environments, which requires higher processing treatments.
  • Lack of steady supply of eco-friendly materials: The supply chain of green materials is immature and could be challenging for OEMs to get a steady supply (e.g., of plastics waste, natural fiber material) from multiple sources on a consistent basis for their vehicle production, thereby leading to increased sourcing costs.
  • Limited only to luxury vehicle owners: Some of the eco-friendly materials that are positioned as alternatives to plastic and leather are at least 20% more expensive when compared to the traditional materials, which will slow their adoption in mass market vehicles.

Table of Contents

Growth Generator

  • Growth Drivers
  • Growth Restraints
  • Challenges of Traditional Materials in Automotive Industry
  • Green vs. Sustainable Materials in Cars: Overview
  • Key Categories of Green Materials in Cars

Growth Environment

  • Key Takeaways
  • Evolution of Green Materials in Automotive Industry
  • Analysis of Green Materials Used in Vehicles
  • Regulations Influencing Adoption of Green Materials in Automotive Industry
  • Select Green Material Implementation by OEMs in Vehicles
  • Future Growth Potential for Green Materials in Cars
  • OEM Comparative Analysis: Adoption of Green Materials

Recycled Materials in Cars Plastics, Rubber, Metals

  • Key Categories of Recycled Materials in Cars
  • Recycling in Automotive: Overview
  • Recycled Plastics Use in Cars: Highlights
  • Overview of Key Plastics Used in Cars
  • Recycled Plastics Usage Analysis in Vehicles
  • Recycled Plastics Application in Cars
  • Eco-friendly Fabrics from Recycled Plastics: Industry Initiatives
  • Challenges to Plastics Recycling in Automotive Industry
  • Recycled Plastics Use and Future Vision by Key OEMs
  • Case Study: Recycled Plastics Usage By Stellantis
  • Recycled Rubbers Use in Cars: Highlights
  • Recycled Rubber Application in Cars
  • Case Study: Recycled Tires by Continental
  • Recycled Metals Use in Cars: Highlights
  • Overview of Key Metals Used in Cars
  • Significance of Metal Recycling in Automotive Industry
  • Recycled Metals: Closed-loop Aluminum Recycling by OEMs
  • Recycled Metals Initiatives in the Automotive Industry
  • Key Takeaways from Recycled Materials in Cars

Recycled Batteries in Cars

  • Recycled Batteries Use in Cars: Highlights
  • Key Materials Recovered from EV Battery Recycling
  • EV Battery Types and Salvageability
  • EV Battery Recycling Market Outlook: Highlights
  • Major Regulations Governing EV Battery Recycling
  • Case Study: Mercedes-Benz EV Battery Recycling
  • EV Battery Recycling: Industry Initiatives
  • Key Takeaways

Bio-based Materials in Cars

  • Key Categories of Bio-based Materials in Cars
  • Why is the Automotive Industry Using Bio-based Materials in Cars?
  • Bio-based Polymers Use in Cars: Highlights
  • Overview and Potential for Biodegradability
  • Bio-based Polymers Usage: Select Initiatives by OEMs
  • Natural Fibers Use in Cars: Highlights
  • Comparison of Traditional Fiber vs. Natural Fibers
  • Overview and Potential for Biodegradability
  • Natural Fibers: Key Initiatives in Cars
  • Natural Fibers: Select Initiatives by OEMs
  • Organic Waste Use in Cars: Highlights
  • Organic Wastes in Automotive: Industry Initiatives and Key Challenges
  • Case Study: Use of Bio-materials in Kia's Vehicles
  • Key Takeaways

Growth Opportunity Universe

  • Growth Opportunity 1: Recycling will Enable Efficient EOL Disposal Practices
  • Growth Opportunity 2: Green Material Strategies Should be Considered during Vehicle Design
  • Growth Opportunity 3: Battery Materials Recycling is Crucial for EV Circular Economy

Appendix & Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • List of Exhibits
  • Legal Disclaimer
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦